{"title":"The Magnitude and Direction of Collider Bias for Binary Variables","authors":"T. Nguyen, A. Dafoe, Elizabeth L. Ogburn","doi":"10.1515/em-2017-0013","DOIUrl":null,"url":null,"abstract":"Abstract Suppose we are interested in the effect of variable X on variable Y. If X and Y both influence, or are associated with variables that influence, a common outcome, called a collider, then conditioning on the collider (or on a variable influenced by the collider – its “child”) induces a spurious association between X and Y, which is known as collider bias. Characterizing the magnitude and direction of collider bias is crucial for understanding the implications of selection bias and for adjudicating decisions about whether to control for variables that are known to be associated with both exposure and outcome but could be either confounders or colliders. Considering a class of situations where all variables are binary, and where X and Y either are, or are respectively influenced by, two marginally independent causes of a collider, we derive collider bias that results from (i) conditioning on specific levels of the collider or its child (on the covariance, risk difference, and in two cases odds ratio, scales), or (ii) linear regression adjustment for, the collider or its child. We also derive simple conditions that determine the sign of such bias.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2017-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16
Abstract
Abstract Suppose we are interested in the effect of variable X on variable Y. If X and Y both influence, or are associated with variables that influence, a common outcome, called a collider, then conditioning on the collider (or on a variable influenced by the collider – its “child”) induces a spurious association between X and Y, which is known as collider bias. Characterizing the magnitude and direction of collider bias is crucial for understanding the implications of selection bias and for adjudicating decisions about whether to control for variables that are known to be associated with both exposure and outcome but could be either confounders or colliders. Considering a class of situations where all variables are binary, and where X and Y either are, or are respectively influenced by, two marginally independent causes of a collider, we derive collider bias that results from (i) conditioning on specific levels of the collider or its child (on the covariance, risk difference, and in two cases odds ratio, scales), or (ii) linear regression adjustment for, the collider or its child. We also derive simple conditions that determine the sign of such bias.
期刊介绍:
Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis