Lithium in NGC 2243 and NGC 104

IF 27.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS The Astronomy and Astrophysics Review Pub Date : 2021-06-03 DOI:10.1051/0004-6361/202039571
M. Aoki, F. Primas, L. Pasquini, A. Weiss, M. Salaris, D. Carollo
{"title":"Lithium in NGC 2243 and NGC 104","authors":"M. Aoki, F. Primas, L. Pasquini, A. Weiss, M. Salaris, D. Carollo","doi":"10.1051/0004-6361/202039571","DOIUrl":null,"url":null,"abstract":"Our aim was to determine the initial Li content of two clusters of similar metallicity but very different ages, the old open cluster NGC 2243 and the metal-rich globular cluster NGC 104. We compared the lithium abundances derived for a large sample of stars (from the turn-off to the red giant branch) in each cluster. For NGC 2243 the Li abundances are from the catalogues released by the Gaia-ESO Public Spectroscopic Survey, while for NGC 104 we measured the Li abundance using FLAMES/GIRAFFE spectra, which include archival data and new observations. We took the initial Li of NGC 2243 to be the lithium measured in stars on the hot side of the Li dip. We used the difference between the initial abundances and the post first dredge-up Li values of NGC 2243, and by adding this amount to the post first dredge-up stars of NGC~104 we were able to infer the initial Li of this cluster. Moreover, we compared our observational results to the predictions of theoretical stellar models for the difference between the initial Li abundance and that after the first dredge-up. The initial lithium content of NGC 2243 was found to be A(Li)_i = 2.85dex by taking the average Li abundance measured from the five hottest stars with the highest lithium abundance. This value is 1.69 dex higher than the lithium abundance derived in post first dredge-up stars. By adding this number to the lithium abundance derived in the post first dredge-up stars in NGC~104, we infer a lower limit of its initial lithium content of A(Li)_i= 2.30dex. Stellar models predict similar values. Therefore, our result offers important insights for further theoretical developments.","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"1 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/0004-6361/202039571","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Our aim was to determine the initial Li content of two clusters of similar metallicity but very different ages, the old open cluster NGC 2243 and the metal-rich globular cluster NGC 104. We compared the lithium abundances derived for a large sample of stars (from the turn-off to the red giant branch) in each cluster. For NGC 2243 the Li abundances are from the catalogues released by the Gaia-ESO Public Spectroscopic Survey, while for NGC 104 we measured the Li abundance using FLAMES/GIRAFFE spectra, which include archival data and new observations. We took the initial Li of NGC 2243 to be the lithium measured in stars on the hot side of the Li dip. We used the difference between the initial abundances and the post first dredge-up Li values of NGC 2243, and by adding this amount to the post first dredge-up stars of NGC~104 we were able to infer the initial Li of this cluster. Moreover, we compared our observational results to the predictions of theoretical stellar models for the difference between the initial Li abundance and that after the first dredge-up. The initial lithium content of NGC 2243 was found to be A(Li)_i = 2.85dex by taking the average Li abundance measured from the five hottest stars with the highest lithium abundance. This value is 1.69 dex higher than the lithium abundance derived in post first dredge-up stars. By adding this number to the lithium abundance derived in the post first dredge-up stars in NGC~104, we infer a lower limit of its initial lithium content of A(Li)_i= 2.30dex. Stellar models predict similar values. Therefore, our result offers important insights for further theoretical developments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ngc2243和ngc104中的锂
我们的目的是测定两个金属丰度相似但年龄差异很大的星团NGC 2243和富金属球状星团NGC 104的初始Li含量。我们比较了每个星团中大量恒星样本(从关闭到红巨星分支)的锂丰度。对于NGC 2243, Li丰度来自Gaia-ESO公共光谱调查发布的目录,而对于NGC 104,我们使用火焰/长颈鹿光谱测量Li丰度,其中包括档案数据和新的观测结果。我们把NGC 2243的初始Li值作为Li dip热侧恒星中测量到的锂值。我们利用NGC 2243的初始丰度与第一次挖掘后的Li值之差,将其与NGC~104的初始Li值相加,可以推断出该星团的初始Li值。此外,我们还将观测结果与理论恒星模型的预测结果进行了比较,以确定初始Li丰度与第一次挖掘后的Li丰度之间的差异。通过对5颗锂丰度最高的最热恒星的平均锂丰度测量,发现NGC 2243的初始锂含量为A(Li)_i = 2.85dex。这个值比第一次打捞后的恒星的锂丰度高1.69个指数。通过将这一数值与NGC~104中首次被打捞的恒星的锂丰度相结合,我们推断出其初始锂含量的下限为a (Li)_i= 2.30dex。恒星模型也预测了类似的数值。因此,我们的结果为进一步的理论发展提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Astronomy and Astrophysics Review
The Astronomy and Astrophysics Review 地学天文-天文与天体物理
CiteScore
45.00
自引率
0.80%
发文量
7
期刊介绍: The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.
期刊最新文献
M 87: a cosmic laboratory for deciphering black hole accretion and jet formation Cepheids as distance indicators and stellar tracers Experimental studies of black holes: status and future prospects The formation and cosmic evolution of dust in the early Universe: I. Dust sources The Fermi/eROSITA bubbles: a look into the nuclear outflow from the Milky Way
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1