Self -Paced Mixture of T Distribution Model

Yang Zhang, Qingtao Tang, Li Niu, Tao Dai, Xi Xiao, Shutao Xia
{"title":"Self -Paced Mixture of T Distribution Model","authors":"Yang Zhang, Qingtao Tang, Li Niu, Tao Dai, Xi Xiao, Shutao Xia","doi":"10.1109/ICASSP.2018.8462323","DOIUrl":null,"url":null,"abstract":"Gaussian mixture model (GMM) is a powerful probabilistic model for representing the probability distribution of observations in the population. However, the fitness of Gaussian mixture model can be significantly degraded when the data contain a certain amount of outliers. Although there are certain variants of GMM (e.g., mixture of Laplace, mixture of $t$ distribution) attempting to handle outliers, none of them can sufficiently mitigate the effect of outliers if the outliers are far from the centroids. Aiming to remove the effect of outliers further, this paper introduces a Self-Paced Learning mechanism into mixture of $t$ distribution, which leads to Self-Paced Mixture of $t$ distribution model (SPTMM). We derive an Expectation-Maximization based algorithm to train SPTMM and show SPTMM is able to screen the outliers. To demonstrate the effectiveness of SPTMM, we apply the model to density estimation and clustering. Finally, the results indicate that SPTMM outperforms other methods, especially on the data with outliers.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"2796-2800"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Gaussian mixture model (GMM) is a powerful probabilistic model for representing the probability distribution of observations in the population. However, the fitness of Gaussian mixture model can be significantly degraded when the data contain a certain amount of outliers. Although there are certain variants of GMM (e.g., mixture of Laplace, mixture of $t$ distribution) attempting to handle outliers, none of them can sufficiently mitigate the effect of outliers if the outliers are far from the centroids. Aiming to remove the effect of outliers further, this paper introduces a Self-Paced Learning mechanism into mixture of $t$ distribution, which leads to Self-Paced Mixture of $t$ distribution model (SPTMM). We derive an Expectation-Maximization based algorithm to train SPTMM and show SPTMM is able to screen the outliers. To demonstrate the effectiveness of SPTMM, we apply the model to density estimation and clustering. Finally, the results indicate that SPTMM outperforms other methods, especially on the data with outliers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自定步混合T分布模型
高斯混合模型(GMM)是一种强大的概率模型,用于表示总体中观测值的概率分布。然而,当数据中含有一定数量的异常值时,高斯混合模型的适应度会显著下降。虽然GMM的某些变体(例如,拉普拉斯的混合物,$t$分布的混合物)试图处理异常值,但如果异常值远离质心,它们都不能充分减轻异常值的影响。为了进一步消除离群值的影响,本文在$t$分布的混合中引入自定节奏学习机制,从而得到$t$分布的自定节奏混合模型(self - pace mixture of $t$ distribution model, SPTMM)。我们推导了一种基于期望最大化的算法来训练SPTMM,并证明了SPTMM能够筛选异常值。为了证明SPTMM的有效性,我们将该模型应用于密度估计和聚类。最后,结果表明SPTMM优于其他方法,特别是在有异常值的数据上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1