Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate

J. Dick, T. Goda, Kosuke Suzuki
{"title":"Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate","authors":"J. Dick, T. Goda, Kosuke Suzuki","doi":"10.1090/mcom/3769","DOIUrl":null,"url":null,"abstract":"We study a randomized quadrature algorithm to approximate the integral of periodic functions defined over the high-dimensional unit cube. Recent work by Kritzer, Kuo, Nuyens and Ullrich (2019) shows that rank-1 lattice rules with a randomly chosen number of points and good generating vector achieve almost the optimal order of the randomized error in weighted Korobov spaces, and moreover, that the error is bounded independently of the dimension if the weight parameters, $\\gamma_j$, satisfy the summability condition $\\sum_{j=1}^{\\infty}\\gamma_j^{1/\\alpha}<\\infty$, where $\\alpha$ is a smoothness parameter. The argument is based on the existence result that at least half of the possible generating vectors yield almost the optimal order of the worst-case error in the same function spaces. In this paper we provide a component-by-component construction algorithm of such randomized rank-1 lattice rules, without any need to check whether the constructed generating vectors satisfy a desired worst-case error bound. Similarly to the above-mentioned work, we prove that our algorithm achieves almost the optimal order of the randomized error and that the error bound is independent of the dimension if the same condition $\\sum_{j=1}^{\\infty}\\gamma_j^{1/\\alpha}<\\infty$ holds. We also provide analogous results for tent-transformed lattice rules for weighted half-period cosine spaces and for polynomial lattice rules in weighted Walsh spaces, respectively.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study a randomized quadrature algorithm to approximate the integral of periodic functions defined over the high-dimensional unit cube. Recent work by Kritzer, Kuo, Nuyens and Ullrich (2019) shows that rank-1 lattice rules with a randomly chosen number of points and good generating vector achieve almost the optimal order of the randomized error in weighted Korobov spaces, and moreover, that the error is bounded independently of the dimension if the weight parameters, $\gamma_j$, satisfy the summability condition $\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$, where $\alpha$ is a smoothness parameter. The argument is based on the existence result that at least half of the possible generating vectors yield almost the optimal order of the worst-case error in the same function spaces. In this paper we provide a component-by-component construction algorithm of such randomized rank-1 lattice rules, without any need to check whether the constructed generating vectors satisfy a desired worst-case error bound. Similarly to the above-mentioned work, we prove that our algorithm achieves almost the optimal order of the randomized error and that the error bound is independent of the dimension if the same condition $\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$ holds. We also provide analogous results for tent-transformed lattice rules for weighted half-period cosine spaces and for polynomial lattice rules in weighted Walsh spaces, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逐层构建随机秩1格规则,实现了几乎最优的随机错误率
研究了一种随机正交算法来逼近高维单位立方体上定义的周期函数的积分。Kritzer, Kuo, Nuyens和Ullrich(2019)最近的研究表明,随机选择点数和良好生成向量的rank-1格规则在加权Korobov空间中几乎可以实现随机误差的最优顺序,并且如果权重参数$\gamma_j$满足可求和条件$\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$(其中$\alpha$为平滑参数),则误差独立于维数有界。该论点基于存在性结果,即在相同的函数空间中,至少有一半的可能生成向量产生几乎最坏情况误差的最优顺序。在本文中,我们提供了这种随机秩-1格规则的一种逐分量构造算法,而不需要检查构造的生成向量是否满足期望的最坏情况误差界。与上述工作类似,我们证明了我们的算法几乎达到了随机误差的最优阶,并且在相同的条件$\sum_{j=1}^{\infty}\gamma_j^{1/\alpha}<\infty$成立的情况下,误差界与维数无关。我们还分别给出了加权半周期余弦空间的帐篷变换格规则和加权Walsh空间中的多项式格规则的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full discretization error analysis of exponential integrators for semilinear wave equations Fast and stable augmented Levin methods for highly oscillatory and singular integrals Finite element/holomorphic operator function method for the transmission eigenvalue problem Algorithms for fundamental invariants and equivariants of finite groups An algorithm for Hodge ideals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1