{"title":"Static spacetimes haunted by a phantom scalar field. I. Classification and global structure in the massless case","authors":"Cristián Martínez, Masato Nozawa","doi":"10.1103/PHYSREVD.103.024003","DOIUrl":null,"url":null,"abstract":"We discuss various novel features of $n(\\ge 4)$-dimensional spacetimes sourced by a massless (non-)phantom scalar field in general relativity. Assuming that the metric is a warped product of static two-dimensional Lorentzian spacetime and an $(n-2)$-dimensional Einstein space $K^{n-2}$ with curvature $k=0, \\pm 1$, and that the scalar field depends only on the radial variable, we present a complete classification of static solutions for both signs of kinetic term. Contrary to the case with a non-phantom scalar field, the Fisher solution is not unique, and there exist two additional metrics corresponding to the generalizations of the Ellis-Gibbons solution and the Ellis-Bronnikov solution. We explore the maximal extension of these solutions in detail by the analysis of null/spacelike geodesics and singularity. For the phantom Fisher and Ellis-Gibbons solutions, we find that there inevitably appear parallelly propagated (p.p) curvature singularities in the parameter region where there are no scalar curvature singularities. Interestingly, the areal radius blows up at these p.p curvature singularities, which are nevertheless accessible within a finite affine time along the radial null geodesics. It follows that only the Ellis-Bronnikov solution describes a regular wormhole in the two-sided asymptotically flat spacetime. Using the general transformation relating the Einstein and Jordan frames, we also present a complete classification of solutions with the same symmetry coupled to a conformal scalar field. Additionally, by solving the field equations in the Jordan frame, we prove that this classification is genuinely complete.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.024003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We discuss various novel features of $n(\ge 4)$-dimensional spacetimes sourced by a massless (non-)phantom scalar field in general relativity. Assuming that the metric is a warped product of static two-dimensional Lorentzian spacetime and an $(n-2)$-dimensional Einstein space $K^{n-2}$ with curvature $k=0, \pm 1$, and that the scalar field depends only on the radial variable, we present a complete classification of static solutions for both signs of kinetic term. Contrary to the case with a non-phantom scalar field, the Fisher solution is not unique, and there exist two additional metrics corresponding to the generalizations of the Ellis-Gibbons solution and the Ellis-Bronnikov solution. We explore the maximal extension of these solutions in detail by the analysis of null/spacelike geodesics and singularity. For the phantom Fisher and Ellis-Gibbons solutions, we find that there inevitably appear parallelly propagated (p.p) curvature singularities in the parameter region where there are no scalar curvature singularities. Interestingly, the areal radius blows up at these p.p curvature singularities, which are nevertheless accessible within a finite affine time along the radial null geodesics. It follows that only the Ellis-Bronnikov solution describes a regular wormhole in the two-sided asymptotically flat spacetime. Using the general transformation relating the Einstein and Jordan frames, we also present a complete classification of solutions with the same symmetry coupled to a conformal scalar field. Additionally, by solving the field equations in the Jordan frame, we prove that this classification is genuinely complete.