Ho Chi Minh City University of Technology (HCMUT); Vietnam National University Ho Chi Minh City (VNU-HCM)

A. Ha
{"title":"Ho Chi Minh City University of Technology (HCMUT); Vietnam National University Ho Chi Minh City (VNU-HCM)","authors":"A. Ha","doi":"10.32362/2410-6593-2021-16-6-465-475","DOIUrl":null,"url":null,"abstract":"Objectives. The study aimed to analyze the current antiseptics and disinfectants, explore the possibility of synthesizing various antiseptics including oligohexamethylene guanidine hydrochloride (OHMG-HC) using microfluidic technology, and investigate the main synthesis parameters affecting the properties of the resulting product.Methods. This article presented a review of literature sources associated with investigations of antimicrobial resistance, the uses of agents based on polyhexamethylene guanidine hydrochloride, oligohexamethylene guanidine hydrochloride, and other salts, obained using modern synthesis technologies with microreactors.Results. The relevance of developing production technologies for the “OHMG-HC branched” substance was determined. The microfluidic method for the synthesis of polymers, and its application prospects for obtaining the target substance were compared with the existing methods. Advantages of the microfluidic method were indicated.Conclusions. Microreactor technologies allow for more accurate control of the conditions of the polycondensation reaction of the starting monomers and increase the yield and selectivity of the oligomers obtained, leading to an increase in the product purity and process efficiency, in contrast with other known methods. The use of microreactor technologies for the synthesis of branched oligohexamethylene guanidine hydrochloride products is a promising strategy.","PeriodicalId":12215,"journal":{"name":"Fine Chemical Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fine Chemical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32362/2410-6593-2021-16-6-465-475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives. The study aimed to analyze the current antiseptics and disinfectants, explore the possibility of synthesizing various antiseptics including oligohexamethylene guanidine hydrochloride (OHMG-HC) using microfluidic technology, and investigate the main synthesis parameters affecting the properties of the resulting product.Methods. This article presented a review of literature sources associated with investigations of antimicrobial resistance, the uses of agents based on polyhexamethylene guanidine hydrochloride, oligohexamethylene guanidine hydrochloride, and other salts, obained using modern synthesis technologies with microreactors.Results. The relevance of developing production technologies for the “OHMG-HC branched” substance was determined. The microfluidic method for the synthesis of polymers, and its application prospects for obtaining the target substance were compared with the existing methods. Advantages of the microfluidic method were indicated.Conclusions. Microreactor technologies allow for more accurate control of the conditions of the polycondensation reaction of the starting monomers and increase the yield and selectivity of the oligomers obtained, leading to an increase in the product purity and process efficiency, in contrast with other known methods. The use of microreactor technologies for the synthesis of branched oligohexamethylene guanidine hydrochloride products is a promising strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目标。本研究旨在分析现有的防腐剂和消毒剂,探索利用微流控技术合成包括盐酸低聚亚甲基胍(OHMG-HC)在内的多种防腐剂的可能性,并研究影响产物性能的主要合成参数。本文综述了现代微反应器合成技术在抗菌药物耐药性研究、以盐酸聚己亚甲基胍、盐酸低聚己亚甲基胍和其他盐类为基础的药物的应用等方面的文献资料。确定了开发“OHMG-HC支化”物质生产技术的相关性。对微流控合成聚合物的方法及其在获取目标物质方面的应用前景与现有方法进行了比较。指出了微流控法的优点。与其他已知方法相比,微反应器技术可以更精确地控制起始单体的缩聚反应条件,提高所得低聚物的产率和选择性,从而提高产品纯度和工艺效率。利用微反应器技术合成支化低聚亚甲基胍是一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methylation of a group of microRNA genes as a marker for the diagnosis and prognosis of non-small cell lung cancer Solid solutions in disulfide systems Re(IV)S2–Ti(IV)S2, Re(IV)S2–Mo(IV)S2, and Re(IV)S2–W(IV)S2 PROTAC® technology and potential for its application in infection control Development of technology for culturing a cell line producing a single-domain antibody fused with the Fc fragment of human IgG1 Concentration of heavy metal ions from aqueous media under dynamic conditions using a composite sorbent based on chitosan and silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1