Chinese Named Entity Recognition Method Combining ALBERT and a Local Adversarial Training and Adding Attention Mechanism

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2022-01-01 DOI:10.4018/ijswis.313946
Runmei Zhang, Li Lulu, Yin Lei, Jingjing Liu, Xu Weiyi, Weiwei Cao, Chen Zhong
{"title":"Chinese Named Entity Recognition Method Combining ALBERT and a Local Adversarial Training and Adding Attention Mechanism","authors":"Runmei Zhang, Li Lulu, Yin Lei, Jingjing Liu, Xu Weiyi, Weiwei Cao, Chen Zhong","doi":"10.4018/ijswis.313946","DOIUrl":null,"url":null,"abstract":"For Chinese NER tasks, there is very little annotation data available. To increase the dataset, improve the accuracy of Chinese NER task, and improve the model's stability, the authors propose a method to add local adversarial training to the transfer learning model and integrate the attention mechanism. The model uses ALBERT for migration pre-training and adds perturbation factors to the output matrix of the embedding layer to constitute local adversarial training. BILSTM is used to encode the shared and private features of the task, and the attention mechanism is introduced to capture the characters that focus more on the entities. Finally, the best entity annotation is obtained by CRF. Experiments are conducted on People's Daily 2004 and Tsinghua University open-source text classification datasets. The experimental results show that compared with the SOTA model, the F1 values of the proposed method in this paper are improved by 7.32 and 7.98 in the two different datasets, respectively, proving that the accuracy of the method in this paper is improved in the Chinese domain.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"12 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.313946","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

For Chinese NER tasks, there is very little annotation data available. To increase the dataset, improve the accuracy of Chinese NER task, and improve the model's stability, the authors propose a method to add local adversarial training to the transfer learning model and integrate the attention mechanism. The model uses ALBERT for migration pre-training and adds perturbation factors to the output matrix of the embedding layer to constitute local adversarial training. BILSTM is used to encode the shared and private features of the task, and the attention mechanism is introduced to capture the characters that focus more on the entities. Finally, the best entity annotation is obtained by CRF. Experiments are conducted on People's Daily 2004 and Tsinghua University open-source text classification datasets. The experimental results show that compared with the SOTA model, the F1 values of the proposed method in this paper are improved by 7.32 and 7.98 in the two different datasets, respectively, proving that the accuracy of the method in this paper is improved in the Chinese domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合ALBERT和局部对抗训练及添加注意机制的中文命名实体识别方法
对于中文的NER任务,可用的标注数据非常少。为了增加数据集,提高中文NER任务的准确率,提高模型的稳定性,作者提出了在迁移学习模型中加入局部对抗训练并集成注意机制的方法。该模型使用ALBERT进行迁移预训练,并在嵌入层的输出矩阵中加入扰动因子构成局部对抗训练。利用BILSTM对任务的共享和私有特征进行编码,并引入注意机制来捕获更关注实体的字符。最后,利用CRF算法得到最佳实体标注。在人民日报2004和清华大学开源文本分类数据集上进行了实验。实验结果表明,与SOTA模型相比,本文方法在两种不同数据集上的F1值分别提高了7.32和7.98,证明本文方法在中文领域的精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1