Automatic Diagnosis of Covid-19 Related Pneumonia from CXR and CT-Scan Images

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-02-12 DOI:10.48084/etasr.4613
N. Kumar, A. Hashmi, M. Gupta, A. Kundu
{"title":"Automatic Diagnosis of Covid-19 Related Pneumonia from CXR and CT-Scan Images","authors":"N. Kumar, A. Hashmi, M. Gupta, A. Kundu","doi":"10.48084/etasr.4613","DOIUrl":null,"url":null,"abstract":"Covid-19 is a highly infectious disease that spreads extremely fast and is transmitted through indirect or direct contact. The scientists have categorized the Covid-19 cases into five different types: severe, critical, asymptomatic, moderate, and mild. Up to May 2021 more than 133.2 million peoples have been infected and almost 2.9 million people have lost their lives from Covid-19. To diagnose Covid-19, practitioners use RT-PCR tests that suffer from many False Positive (FP) and False Negative (FN) results while they take a long time. One solution to this is the conduction of a greater number of tests simultaneously to improve the True Positive (TP) ratio. However, CT-scan and X-ray images can also be used for early detection of Covid-19 related pneumonia. By the use of modern deep learning techniques, accuracy of more than 95% can be achieved. We used eight CNN (CovNet)-based deep learning models, namely ResNet 152 v2, InceptionResNet v2, Xception, Inception v3, ResNet 50, NASNetLarge, DenseNet 201, and VGG 16 for both X-rays and CT-scans to diagnose pneumonia. The achieved comparative results show that the proposed models are able to differentiate the Covid-19 positive cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4613","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19

Abstract

Covid-19 is a highly infectious disease that spreads extremely fast and is transmitted through indirect or direct contact. The scientists have categorized the Covid-19 cases into five different types: severe, critical, asymptomatic, moderate, and mild. Up to May 2021 more than 133.2 million peoples have been infected and almost 2.9 million people have lost their lives from Covid-19. To diagnose Covid-19, practitioners use RT-PCR tests that suffer from many False Positive (FP) and False Negative (FN) results while they take a long time. One solution to this is the conduction of a greater number of tests simultaneously to improve the True Positive (TP) ratio. However, CT-scan and X-ray images can also be used for early detection of Covid-19 related pneumonia. By the use of modern deep learning techniques, accuracy of more than 95% can be achieved. We used eight CNN (CovNet)-based deep learning models, namely ResNet 152 v2, InceptionResNet v2, Xception, Inception v3, ResNet 50, NASNetLarge, DenseNet 201, and VGG 16 for both X-rays and CT-scans to diagnose pneumonia. The achieved comparative results show that the proposed models are able to differentiate the Covid-19 positive cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CXR和ct扫描图像的新型冠状病毒肺炎自动诊断
Covid-19是一种传染性极强的疾病,传播速度极快,可通过间接或直接接触传播。科学家们将新冠肺炎病例分为五种不同的类型:严重、危急、无症状、中度和轻度。截至2021年5月,已有超过1.332亿人感染,近290万人因Covid-19而丧生。为了诊断Covid-19,从业者使用RT-PCR测试,这些测试会产生许多假阳性(FP)和假阴性(FN)结果,而且需要很长时间。一个解决方案是同时进行更多的测试,以提高真阳性(TP)比率。然而,ct扫描和x射线图像也可用于早期发现Covid-19相关肺炎。通过使用现代深度学习技术,可以达到95%以上的准确率。我们使用了8个基于CNN (CovNet)的深度学习模型,分别是ResNet 152 v2、InceptionResNet v2、Xception、Inception v3、ResNet 50、NASNetLarge、DenseNet 201和VGG 16,用于x射线和ct扫描诊断肺炎。对比结果表明,所提出的模型能够区分新冠病毒阳性病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1