Automatic Diagnosis of Covid-19 Related Pneumonia from CXR and CT-Scan Images

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY Engineering, Technology & Applied Science Research Pub Date : 2022-02-12 DOI:10.48084/etasr.4613
N. Kumar, A. Hashmi, M. Gupta, A. Kundu
{"title":"Automatic Diagnosis of Covid-19 Related Pneumonia from CXR and CT-Scan Images","authors":"N. Kumar, A. Hashmi, M. Gupta, A. Kundu","doi":"10.48084/etasr.4613","DOIUrl":null,"url":null,"abstract":"Covid-19 is a highly infectious disease that spreads extremely fast and is transmitted through indirect or direct contact. The scientists have categorized the Covid-19 cases into five different types: severe, critical, asymptomatic, moderate, and mild. Up to May 2021 more than 133.2 million peoples have been infected and almost 2.9 million people have lost their lives from Covid-19. To diagnose Covid-19, practitioners use RT-PCR tests that suffer from many False Positive (FP) and False Negative (FN) results while they take a long time. One solution to this is the conduction of a greater number of tests simultaneously to improve the True Positive (TP) ratio. However, CT-scan and X-ray images can also be used for early detection of Covid-19 related pneumonia. By the use of modern deep learning techniques, accuracy of more than 95% can be achieved. We used eight CNN (CovNet)-based deep learning models, namely ResNet 152 v2, InceptionResNet v2, Xception, Inception v3, ResNet 50, NASNetLarge, DenseNet 201, and VGG 16 for both X-rays and CT-scans to diagnose pneumonia. The achieved comparative results show that the proposed models are able to differentiate the Covid-19 positive cases.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"25 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19

Abstract

Covid-19 is a highly infectious disease that spreads extremely fast and is transmitted through indirect or direct contact. The scientists have categorized the Covid-19 cases into five different types: severe, critical, asymptomatic, moderate, and mild. Up to May 2021 more than 133.2 million peoples have been infected and almost 2.9 million people have lost their lives from Covid-19. To diagnose Covid-19, practitioners use RT-PCR tests that suffer from many False Positive (FP) and False Negative (FN) results while they take a long time. One solution to this is the conduction of a greater number of tests simultaneously to improve the True Positive (TP) ratio. However, CT-scan and X-ray images can also be used for early detection of Covid-19 related pneumonia. By the use of modern deep learning techniques, accuracy of more than 95% can be achieved. We used eight CNN (CovNet)-based deep learning models, namely ResNet 152 v2, InceptionResNet v2, Xception, Inception v3, ResNet 50, NASNetLarge, DenseNet 201, and VGG 16 for both X-rays and CT-scans to diagnose pneumonia. The achieved comparative results show that the proposed models are able to differentiate the Covid-19 positive cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CXR和ct扫描图像的新型冠状病毒肺炎自动诊断
Covid-19是一种传染性极强的疾病,传播速度极快,可通过间接或直接接触传播。科学家们将新冠肺炎病例分为五种不同的类型:严重、危急、无症状、中度和轻度。截至2021年5月,已有超过1.332亿人感染,近290万人因Covid-19而丧生。为了诊断Covid-19,从业者使用RT-PCR测试,这些测试会产生许多假阳性(FP)和假阴性(FN)结果,而且需要很长时间。一个解决方案是同时进行更多的测试,以提高真阳性(TP)比率。然而,ct扫描和x射线图像也可用于早期发现Covid-19相关肺炎。通过使用现代深度学习技术,可以达到95%以上的准确率。我们使用了8个基于CNN (CovNet)的深度学习模型,分别是ResNet 152 v2、InceptionResNet v2、Xception、Inception v3、ResNet 50、NASNetLarge、DenseNet 201和VGG 16,用于x射线和ct扫描诊断肺炎。对比结果表明,所提出的模型能够区分新冠病毒阳性病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
期刊最新文献
Malware Attack Detection in Large Scale Networks using the Ensemble Deep Restricted Boltzmann Machine Enhancement of Power System Security by the Intelligent Control of a Static Synchronous Series Compensator Mix Design of Fly Ash and GGBS based Geopolymer Concrete activated with Water Glass A New Approach on the Egyptian Black Sand Ilmenite Alteration Processes Boric Acid as a Safe Insecticide for Controlling the Mediterranean Fruit Fly Ceratitis Capitata Wiedemann (Diptera: Tephritidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1