Parametric analysis of KLT algorithm in autonomous driving

Young-Hwan Han, Changhyeon Kim, Youngseok Jang, H. Kim
{"title":"Parametric analysis of KLT algorithm in autonomous driving","authors":"Young-Hwan Han, Changhyeon Kim, Youngseok Jang, H. Kim","doi":"10.23919/ICCAS50221.2020.9268239","DOIUrl":null,"url":null,"abstract":"The Kanade-Lucas-Tomasi(KLT) tracking algorithm is a widely used feature tracking algorithm in the field of computer vision(CV). The selection of proper warping parameters for the estimation of optical flow between adjacent image frames is crucial to obtain accurate and robust tracking results. We compare the various warping parameter settings in an autonomous driving environment based on the modified KLT algorithm with some well-known techniques. The skew and rotation parameters did not show better performance, but rather made convergence more difficult. The scale-parameter-added model has the best performance among the sets of warping parameters.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"4 1","pages":"184-189"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Kanade-Lucas-Tomasi(KLT) tracking algorithm is a widely used feature tracking algorithm in the field of computer vision(CV). The selection of proper warping parameters for the estimation of optical flow between adjacent image frames is crucial to obtain accurate and robust tracking results. We compare the various warping parameter settings in an autonomous driving environment based on the modified KLT algorithm with some well-known techniques. The skew and rotation parameters did not show better performance, but rather made convergence more difficult. The scale-parameter-added model has the best performance among the sets of warping parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动驾驶中KLT算法的参数分析
Kanade-Lucas-Tomasi(KLT)跟踪算法是计算机视觉(CV)领域中应用广泛的特征跟踪算法。选取合适的弯曲参数估计相邻图像帧之间的光流是获得准确和鲁棒跟踪结果的关键。我们将基于改进KLT算法的自动驾驶环境中的各种翘曲参数设置与一些知名技术进行了比较。歪斜和旋转参数没有表现出更好的性能,反而使收敛更加困难。在多组翘曲参数中,添加尺度参数的模型性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time quadrotor actuator fault detection and isolation using multivariate statistical analysis techniques with sensor measurements Autonomous docking of an Unmanned Surface Vehicle based on Reachability Analysis Clutch Torque Estimation of Ball-ramp Dual Clutch Transmission using Higher Order Disturbance Observer Robust Traffic Light Detection and Classification Under Day and Night Conditions Visual Surveillance using Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1