Comparing methods for sentinel surveillance site placement

Geoffrey Fairchild, Alberto Maria Segre, G. Rushton, Eric D. Foster, P. Polgreen
{"title":"Comparing methods for sentinel surveillance site placement","authors":"Geoffrey Fairchild, Alberto Maria Segre, G. Rushton, Eric D. Foster, P. Polgreen","doi":"10.3402/EHTJ.V4I0.11145","DOIUrl":null,"url":null,"abstract":"Introduction ILI data are collected via an Influenza Sentinel Provider Surveillance Network at the state level. Because participation is voluntary, locations of the sentinel providers may not reflect optimal geographic placement. This study analyzes two different geographic placement schemes*a maximal coverage model (MCM) and a K-median model, two location-allocation models commonly used in geographic information systems (GIS) (1). The MCM chooses sites in areas with the densest population. The K-median model chooses sites, which minimize the average distance traveled by individuals to their nearest site. We have previously shown how a placement model can be used to improve population coverage for ILI surveillance in Iowa when considering the sites recruited by the Iowa Department of Public Health (IDPH) (2). We extend this work by evaluating different surveillance placement algorithms with respect to outbreak intensity and timing (i.e., being able to capture the start, peak and end of the influenza season).","PeriodicalId":72898,"journal":{"name":"Emerging health threats journal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging health threats journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/EHTJ.V4I0.11145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction ILI data are collected via an Influenza Sentinel Provider Surveillance Network at the state level. Because participation is voluntary, locations of the sentinel providers may not reflect optimal geographic placement. This study analyzes two different geographic placement schemes*a maximal coverage model (MCM) and a K-median model, two location-allocation models commonly used in geographic information systems (GIS) (1). The MCM chooses sites in areas with the densest population. The K-median model chooses sites, which minimize the average distance traveled by individuals to their nearest site. We have previously shown how a placement model can be used to improve population coverage for ILI surveillance in Iowa when considering the sites recruited by the Iowa Department of Public Health (IDPH) (2). We extend this work by evaluating different surveillance placement algorithms with respect to outbreak intensity and timing (i.e., being able to capture the start, peak and end of the influenza season).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哨点监测点布置方法的比较
ILI数据是通过州一级的流感哨点提供者监测网络收集的。由于参与是自愿的,哨点提供者的位置可能不能反映最佳的地理位置。本文分析了地理信息系统(GIS)中常用的两种地理位置分配模型——最大覆盖模型(MCM)和k -中位数模型(1)。MCM模型在人口最密集的地区选择站点。k -中值模型选择的地点,使个人到最近地点的平均距离最小。在爱荷华州公共卫生部(IDPH)招募的站点中,我们之前已经展示了如何使用放置模型来提高爱荷华州流感监测的人口覆盖率(2)。我们通过评估不同的监测放置算法来扩展这项工作,这些算法与爆发强度和时间有关(即,能够捕捉流感季节的开始、高峰和结束)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Natural World Individuals and Society Hospital preparedness in community measles outbreaks-challenges and recommendations for low-resource settings. Detection of blaIMP4 and blaNDM1 harboring Klebsiella pneumoniae isolates in a university hospital in Malaysia. Two vicious circles contributing to a diagnostic delay for tuberculosis patients in Arkhangelsk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1