Development and Simulation of Damage Tolerant Control Laws for a Compound Helicopter

Marit E. Knapp, Christina M. Ivler, J. Horn, Eric N. Johnson, D. Bridges, Mark J. S. Lopez, M. Tischler, Joseph Wagster, Kenny Cheung
{"title":"Development and Simulation of Damage Tolerant Control Laws for a Compound Helicopter","authors":"Marit E. Knapp, Christina M. Ivler, J. Horn, Eric N. Johnson, D. Bridges, Mark J. S. Lopez, M. Tischler, Joseph Wagster, Kenny Cheung","doi":"10.2514/6.2020-1831","DOIUrl":null,"url":null,"abstract":"A piloted simulation study was conducted to evaluate damage tolerant control (DTC) law concepts. The simulated aircraft is a fly-by-wire compound utility helicopter based on the X-49A. The aircraft features auxiliary thrust through a vectored thrust ducted propeller and auxiliary lift through a wing. The configuration includes a number of redundant control surfaces, including flaperons and elevators that help enable DTC. This paper covers the design of the baseline inner-loop control laws, which were optimized to meet Level 1 requirements for a comprehensive set of stability, handling qualities and performance specifications. Methodology and development of the control allocation methods for DTC is presented. The fixed-base piloted simulation experiment qualitatively and quantitatively evaluated the baseline control laws with various control allocation methods. Handling qualities ratings were collected using a series of maneuvers, including pitch and roll capture and tracking tasks. Survivability ratings, quantitative performance metrics, and pilot comments were collected for multiple damage scenarios in which the pilot attempted to safely land the aircraft following damage that severely limited control in one or more axes. Handling qualities ratings were also collected for the tracking tasks in the presence of damage. The paper is concluded with an overall evaluation and comparison of the damage tolerant methods.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-1831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A piloted simulation study was conducted to evaluate damage tolerant control (DTC) law concepts. The simulated aircraft is a fly-by-wire compound utility helicopter based on the X-49A. The aircraft features auxiliary thrust through a vectored thrust ducted propeller and auxiliary lift through a wing. The configuration includes a number of redundant control surfaces, including flaperons and elevators that help enable DTC. This paper covers the design of the baseline inner-loop control laws, which were optimized to meet Level 1 requirements for a comprehensive set of stability, handling qualities and performance specifications. Methodology and development of the control allocation methods for DTC is presented. The fixed-base piloted simulation experiment qualitatively and quantitatively evaluated the baseline control laws with various control allocation methods. Handling qualities ratings were collected using a series of maneuvers, including pitch and roll capture and tracking tasks. Survivability ratings, quantitative performance metrics, and pilot comments were collected for multiple damage scenarios in which the pilot attempted to safely land the aircraft following damage that severely limited control in one or more axes. Handling qualities ratings were also collected for the tracking tasks in the presence of damage. The paper is concluded with an overall evaluation and comparison of the damage tolerant methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合型直升机容损控制律的研制与仿真
对容损控制(DTC)律概念进行了初步的仿真研究。模拟飞机是一种基于X-49A的电传复合通用直升机。该飞机通过矢量推力导管螺旋桨提供辅助推力,并通过机翼提供辅助升力。该配置包括许多冗余控制面,包括有助于启用DTC的襟副翼和升降舵。本文介绍了基准内环控制律的设计,优化后的内环控制律在稳定性、处理质量和性能规格方面满足1级要求。介绍了直接转矩控制分配方法的方法和发展。通过定基导飞仿真实验,对各种控制分配方法下的基线控制规律进行定性和定量评价。处理质量评级收集使用一系列的机动,包括俯仰和滚转捕获和跟踪任务。生存能力评级、定量性能指标和飞行员评论收集了多种损坏场景,在这些场景中,飞行员试图在严重限制控制的一个或多个轴上安全降落飞机。处理质量评级也收集了跟踪任务在存在的损害。最后对几种损伤容限方法进行了综合评价和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
nCoV-BusterBot: Mission Simulation Lab Modules for Supporting a Lab-based Autonomous Systems Class in a Remote Learning Environment Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment. System Analyzer for a Bioinspired Mars Flight Vehicle System for Varying Mission Contexts. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Nano-Catalytic Additives The Effects of Turbulence-Kinetics Interactions on Reducing Chemical Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1