Recent progress on coherent computation based on quantum squeezing

Bo Lu, Lu Liu, Jun-Yang Song, Kai Wen, Chuan Wang
{"title":"Recent progress on coherent computation based on quantum squeezing","authors":"Bo Lu,&nbsp;Lu Liu,&nbsp;Jun-Yang Song,&nbsp;Kai Wen,&nbsp;Chuan Wang","doi":"10.1007/s43673-023-00077-4","DOIUrl":null,"url":null,"abstract":"<div><p>Squeezed vacuum state of light is an important concept of quantum optics which has an uncertainty reduction in a specific quadrature compared to the coherent vacuum state. The coherent Ising machines (CIMs) based on the squeezed state are capable of searching the ground state of the Ising model, which can be used to solve combinatorial optimization problems and have been experimentally demonstrated to have excellent computational performance. This review introduces the recent progress of a CIM hardware solver based on optical parametric oscillators, including the delayed optical path scheme and a measurement feedback scheme. Also, the basic principles, unique advantages, and potential challenges are described. We expect that the applications of large-scale CIM hardware solvers will have a huge impact on the acceleration of the computation power.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00077-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00077-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Squeezed vacuum state of light is an important concept of quantum optics which has an uncertainty reduction in a specific quadrature compared to the coherent vacuum state. The coherent Ising machines (CIMs) based on the squeezed state are capable of searching the ground state of the Ising model, which can be used to solve combinatorial optimization problems and have been experimentally demonstrated to have excellent computational performance. This review introduces the recent progress of a CIM hardware solver based on optical parametric oscillators, including the delayed optical path scheme and a measurement feedback scheme. Also, the basic principles, unique advantages, and potential challenges are described. We expect that the applications of large-scale CIM hardware solvers will have a huge impact on the acceleration of the computation power.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子挤压的相干计算最新进展
光的挤压真空态是量子光学的一个重要概念,与相干真空态相比,它的不确定性在特定的二次方中有所降低。基于挤压态的相干伊辛机(CIMs)能够搜索伊辛模型的基态,可用于解决组合优化问题,实验证明其具有优异的计算性能。本综述介绍了基于光参量振荡器的 CIM 硬件求解器的最新进展,包括延迟光路方案和测量反馈方案。此外,还介绍了基本原理、独特优势和潜在挑战。我们期待大规模 CIM 硬件求解器的应用将对加速计算能力产生巨大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials Wavelength multicasting quantum clock synchronization network Non-equilibrium BCS-BEC crossover and unconventional FFLO superfluid in a strongly interacting driven-dissipative Fermi gas Publisher Correction: Density functional theory study of two-dimensional hybrid organic-inorganic perovskites: frontier level alignment and chirality-induced spin splitting Competing few-body correlations in ultracold Fermi polarons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1