{"title":"Oriented Microstructure in Neural Tissue Engineering: A Review","authors":"F. Ghorbani, A. Zamanian","doi":"10.4172/2157-7552.1000182","DOIUrl":null,"url":null,"abstract":"Regeneration of neural injuries by formation of new axons and myelination to improve quality of patient life is undeniable difficulty in the world in which scientists examined different strategies from ancient times. Recently, 3D tissue engineering scaffolds simulated original extracellular matrix (ECM) and provide desirable substrate for cellular attachment, proliferation and differentiation. However, similarity of scaffold’s materials to ECM contaminant is effective in achieving better results. Investigations demonstrated that oriented fibers, pores and unidirectional channels or conduits act as cell guidance and showed significant effect on cellular differentiation and axonal reconstruction. Between all the methods of scaffold fabrication, freeze casting provides lamellar type and controlled pores that are necessary in neural tissue engineering. In brief, designing scaffolds with oriented structure such as freeze casting with unidirectional solidification and seeding an appropriate cell before implantation improve repair process of neural damages.","PeriodicalId":17539,"journal":{"name":"Journal of Tissue Science and Engineering","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7552.1000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Regeneration of neural injuries by formation of new axons and myelination to improve quality of patient life is undeniable difficulty in the world in which scientists examined different strategies from ancient times. Recently, 3D tissue engineering scaffolds simulated original extracellular matrix (ECM) and provide desirable substrate for cellular attachment, proliferation and differentiation. However, similarity of scaffold’s materials to ECM contaminant is effective in achieving better results. Investigations demonstrated that oriented fibers, pores and unidirectional channels or conduits act as cell guidance and showed significant effect on cellular differentiation and axonal reconstruction. Between all the methods of scaffold fabrication, freeze casting provides lamellar type and controlled pores that are necessary in neural tissue engineering. In brief, designing scaffolds with oriented structure such as freeze casting with unidirectional solidification and seeding an appropriate cell before implantation improve repair process of neural damages.