Chest X-ray and CT Scan Classification using Ensemble Learning through Transfer Learning

IF 1.1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS EAI Endorsed Transactions on Scalable Information Systems Pub Date : 2022-06-09 DOI:10.4108/eetsis.vi.382
S. Siddiqui, Neda Fatima, Anwar Ahmad
{"title":"Chest X-ray and CT Scan Classification using Ensemble Learning through Transfer Learning","authors":"S. Siddiqui, Neda Fatima, Anwar Ahmad","doi":"10.4108/eetsis.vi.382","DOIUrl":null,"url":null,"abstract":"COVID-19 has posed an extraordinary challenge to the entire world. As the number of COVID-19 cases continues to climb around the world, medical experts are facing an unprecedented challenge in correctly diagnosing and predicting the disease. The present research attempts to develop a new and effective strategy for classifying chest X-rays and CT Scans in order to distinguish COVID-19 from other diseases. Transfer learning was used to train various models for chest X-rays and CT Scan, including Inceptionv3, Xception, InceptionResNetv2, DenseNet121, and Resnet50. The models are then integrated using an ensemble technique to improve forecast accuracy. The proposed ensemble approach is more effective in classifying X-ray and CT Scan and forecasting COVID-19.","PeriodicalId":43034,"journal":{"name":"EAI Endorsed Transactions on Scalable Information Systems","volume":"9 1","pages":"e8"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Scalable Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetsis.vi.382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

COVID-19 has posed an extraordinary challenge to the entire world. As the number of COVID-19 cases continues to climb around the world, medical experts are facing an unprecedented challenge in correctly diagnosing and predicting the disease. The present research attempts to develop a new and effective strategy for classifying chest X-rays and CT Scans in order to distinguish COVID-19 from other diseases. Transfer learning was used to train various models for chest X-rays and CT Scan, including Inceptionv3, Xception, InceptionResNetv2, DenseNet121, and Resnet50. The models are then integrated using an ensemble technique to improve forecast accuracy. The proposed ensemble approach is more effective in classifying X-ray and CT Scan and forecasting COVID-19.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过迁移学习使用集成学习的胸部x线和CT扫描分类
2019冠状病毒病给全世界带来了非同寻常的挑战。随着全球新冠肺炎病例数持续攀升,医学专家在正确诊断和预测疾病方面面临着前所未有的挑战。本研究试图开发一种新的有效的胸部x线和CT扫描分类策略,以便将COVID-19与其他疾病区分开来。迁移学习用于训练各种胸部x射线和CT扫描模型,包括Inceptionv3、Xception、InceptionResNetv2、DenseNet121和Resnet50。然后使用集合技术将这些模型集成起来以提高预报精度。本文提出的集成方法在x射线和CT扫描分类和COVID-19预测中更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EAI Endorsed Transactions on Scalable Information Systems
EAI Endorsed Transactions on Scalable Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.80
自引率
15.40%
发文量
49
审稿时长
10 weeks
期刊最新文献
Factors influencing the employment intention of private college graduates based on robot control system design Japanese Flipped Classroom Knowledge Acquisition Based on Canvas Web-Based Learning Management System Effectiveness and perception of augmented reality in the teaching of structured programming fundamentals in university students Mechanical Design Method and Joint Simulation Analysis of Industrial Robots Based on Trajectory Planning Algorithm and Kinematics Global research on ubiquitous learning: A network and output approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1