A discrete-time feedback controller for containerized cloud applications

L. Baresi, Sam Guinea, A. Leva, G. Quattrocchi
{"title":"A discrete-time feedback controller for containerized cloud applications","authors":"L. Baresi, Sam Guinea, A. Leva, G. Quattrocchi","doi":"10.1145/2950290.2950328","DOIUrl":null,"url":null,"abstract":"Modern Web applications exploit Cloud infrastructures to scale their resources and cope with sudden changes in the workload. While the state of practice is to focus on dynamically adding and removing virtual machines, we advocate that there are strong benefits in containerizing the applications and in scaling the containers. In this paper we present an autoscaling technique that allows containerized applications to scale their resources both at the VM level and at the container level. Furthermore, applications can combine this infrastructural adaptation with platform-level adaptation. The autoscaling is made possible by our planner, which consists of a grey-box discrete-time feedback controller. The work has been validated using two application benchmarks deployed to Amazon EC2. Our experiments show that our planner outperforms Amazon's AutoScaling by 78% on average without containers; and that the introduction of containers allows us to improve by yet another 46% on average.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2950328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

Modern Web applications exploit Cloud infrastructures to scale their resources and cope with sudden changes in the workload. While the state of practice is to focus on dynamically adding and removing virtual machines, we advocate that there are strong benefits in containerizing the applications and in scaling the containers. In this paper we present an autoscaling technique that allows containerized applications to scale their resources both at the VM level and at the container level. Furthermore, applications can combine this infrastructural adaptation with platform-level adaptation. The autoscaling is made possible by our planner, which consists of a grey-box discrete-time feedback controller. The work has been validated using two application benchmarks deployed to Amazon EC2. Our experiments show that our planner outperforms Amazon's AutoScaling by 78% on average without containers; and that the introduction of containers allows us to improve by yet another 46% on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于容器化云应用程序的离散时间反馈控制器
现代Web应用程序利用云基础设施来扩展其资源并应对工作负载的突然变化。虽然实践状态关注的是动态添加和删除虚拟机,但我们主张将应用程序容器化和扩展容器有很大的好处。在本文中,我们提出了一种自动扩展技术,该技术允许容器化应用程序在虚拟机级别和容器级别扩展其资源。此外,应用程序可以将这种基础设施适应和平台级适应结合起来。我们的规划器由一个灰盒离散时间反馈控制器组成,使自动缩放成为可能。使用部署到Amazon EC2的两个应用程序基准测试验证了这项工作。我们的实验表明,在没有容器的情况下,我们的计划器比亚马逊的自动缩放(AutoScaling)平均高出78%;容器的引入使我们平均又提高了46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of fault localization techniques Model, execute, and deploy: answering the hard questions in end-user programming (showcase) Guided code synthesis using deep neural networks Automated change impact analysis between SysML models of requirements and design Sustainable software design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1