{"title":"Convolutions through time for multi-label movie genre classification","authors":"Jonatas Wehrmann, Rodrigo C. Barros","doi":"10.1145/3019612.3019641","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the suitability of employing Convolutional Neural Networks (ConvNets) for multi-label movie trailer genre classification. Assigning genres to movies is a particularly challenging task because genre is an immaterial feature that is not physically present in a movie frame, so off-the-shelf image detection models cannot be easily adapted to this context. Moreover, multi-label classification is more challenging than single-label classification considering that one instance can be assigned to multiple classes at once. We propose a novel classification method that encapsulates an ultra-deep ConvNet with residual connections. Our approach extracts temporal information from image-based features prior to performing the mapping of trailers to genres. We compare our novel approach with the current state-of-the-art techniques for movie classification, which make use of well-known image descriptors and low-level handcrafted features. Results show that our method significantly outperforms the state-of-the-art in this task, improving the classification accuracy for all genres.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In this paper, we explore the suitability of employing Convolutional Neural Networks (ConvNets) for multi-label movie trailer genre classification. Assigning genres to movies is a particularly challenging task because genre is an immaterial feature that is not physically present in a movie frame, so off-the-shelf image detection models cannot be easily adapted to this context. Moreover, multi-label classification is more challenging than single-label classification considering that one instance can be assigned to multiple classes at once. We propose a novel classification method that encapsulates an ultra-deep ConvNet with residual connections. Our approach extracts temporal information from image-based features prior to performing the mapping of trailers to genres. We compare our novel approach with the current state-of-the-art techniques for movie classification, which make use of well-known image descriptors and low-level handcrafted features. Results show that our method significantly outperforms the state-of-the-art in this task, improving the classification accuracy for all genres.