Ammonia synthesis by atmospheric-pressure plasma jet at room temperature

Takumi Tsuji, H. Kuwahata, I. Mikami
{"title":"Ammonia synthesis by atmospheric-pressure plasma jet at room temperature","authors":"Takumi Tsuji, H. Kuwahata, I. Mikami","doi":"10.2978/jsas.33105","DOIUrl":null,"url":null,"abstract":"Ammonia (NH 3 ) is extremely important as a raw material of chemical fertilizers for food production. NH 3 was produced in water irradiated with an atmospheric-pressure argon (Ar) plasma jet in air. The concentration of ammonium ions (NH 4+ ) in water was measured under different plasma irradiation time, applied voltage, and plasma irradiation distance. The concentration of formed NH 4+ increased almost in proportion to the plasma irradiation time and the applied voltage. The maximum NH 4+ concentration obtained in this study was 43.2 µM at an applied voltage of 10 kV, an Ar gas flow rate of 10 L/min, a plasma irradiation distance of 10 mm, and a plasma irradiation time of 80 min. During plasma irradiation, the water temperature was ~26 °C.","PeriodicalId":14991,"journal":{"name":"Journal of Advanced Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2978/jsas.33105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia (NH 3 ) is extremely important as a raw material of chemical fertilizers for food production. NH 3 was produced in water irradiated with an atmospheric-pressure argon (Ar) plasma jet in air. The concentration of ammonium ions (NH 4+ ) in water was measured under different plasma irradiation time, applied voltage, and plasma irradiation distance. The concentration of formed NH 4+ increased almost in proportion to the plasma irradiation time and the applied voltage. The maximum NH 4+ concentration obtained in this study was 43.2 µM at an applied voltage of 10 kV, an Ar gas flow rate of 10 L/min, a plasma irradiation distance of 10 mm, and a plasma irradiation time of 80 min. During plasma irradiation, the water temperature was ~26 °C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温常压等离子体射流合成氨
氨(nh3)是一种极为重要的粮食生产化肥原料。用常压氩(Ar)等离子体射流辐照水中产生nh3。测定了不同等离子体辐照时间、施加电压和辐照距离下水中铵离子(nh4 +)的浓度。形成的nh4 +浓度几乎与等离子体辐照时间和施加电压成正比。在施加电压为10 kV、氩气流速为10 L/min、等离子体辐照距离为10 mm、等离子体辐照时间为80 min的条件下,本研究获得的最大nh4 +浓度为43.2µM。等离子体辐照时,水温为~26℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LaNi5/V 薄膜上におけるCO2のメタン化 Selective synthesis of TiO2 nanocrystals and preparation of their dispersions for the electron transport layer of perovskite solar cells カフェインによるコマツナの生理障害の解消方法についての検討 Deposition of AlN thin film at room temperature by pressure gradient sputtering and evaluation of practicality by 3ω method Effect of EB treatment on permeation enhancement of palladium-free hydrogen purification membrane of SUS316L
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1