Sabyasachi Ghosh, Swarup Roy, Jishu Naskar, R. K. Kole
{"title":"Plant-Mediated Synthesis of Mono- and Bimetallic (Au–Ag) Nanoparticles: Future Prospects for Food Quality and Safety","authors":"Sabyasachi Ghosh, Swarup Roy, Jishu Naskar, R. K. Kole","doi":"10.1155/2023/2781667","DOIUrl":null,"url":null,"abstract":"The environmental, economic, and operational limits associated with the physical, chemical, and microbiological techniques for the production of nanoparticles (NPs) are the principal obstructions to their rapid commercial applications in various fields including food packaging and sensing to ensure food quality and safety. Over the years, many reports revealed that the nanotechnological (metal-based NPs) application facilitates an alternate, interactive, reliable, as well as simple technology in the food industries and packaging sector. In this review, we summarized the usage of plant extract for the biosynthesis of bimetallic (Au–Ag) and monometallic counterpart NPs. Further, the impact of reaction conditions and identification of reactive phytochemicals with the reaction mechanism of these nanoparticles was reviewed. The recent progress on the applications of Ag, Au, or Au–Ag NPs in food quality analysis and food packaging was comprehensively discussed. The safety aspect of the nanoparticles for food sector use was also briefly stated.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/2781667","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5
Abstract
The environmental, economic, and operational limits associated with the physical, chemical, and microbiological techniques for the production of nanoparticles (NPs) are the principal obstructions to their rapid commercial applications in various fields including food packaging and sensing to ensure food quality and safety. Over the years, many reports revealed that the nanotechnological (metal-based NPs) application facilitates an alternate, interactive, reliable, as well as simple technology in the food industries and packaging sector. In this review, we summarized the usage of plant extract for the biosynthesis of bimetallic (Au–Ag) and monometallic counterpart NPs. Further, the impact of reaction conditions and identification of reactive phytochemicals with the reaction mechanism of these nanoparticles was reviewed. The recent progress on the applications of Ag, Au, or Au–Ag NPs in food quality analysis and food packaging was comprehensively discussed. The safety aspect of the nanoparticles for food sector use was also briefly stated.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.