{"title":"Modeling Spectrally-Selective Reflection for Thermal Management in Monofacial and Bifacial Modules","authors":"I. Slauch, M. Deceglie, T. Silverman, V. Ferry","doi":"10.1109/PVSC45281.2020.9300678","DOIUrl":null,"url":null,"abstract":"Parasitic absorption in photovoltaic modules is a major source of waste heat, which drives operating temperatures 20-30K above ambient. Spectrally-selective sub-bandgap reflection can reduce parasitic absorption, thereby improving module efficiency and power output. Here, we investigate the performance of 1-D spectrally-selective mirrors in monofacial Al BSF and PERC modules, and bifacial PERC modules. In monofacial modules, these mirrors offer >1.2% increase in energy yield compared to single-layer anti-reflection coatings, while cooling by over 1K on average. Mirrors reduced bifacial module parasitic absorption by up to 34 W/m2 out of 1240 W/m2 incident.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"56 1","pages":"1388-1390"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Parasitic absorption in photovoltaic modules is a major source of waste heat, which drives operating temperatures 20-30K above ambient. Spectrally-selective sub-bandgap reflection can reduce parasitic absorption, thereby improving module efficiency and power output. Here, we investigate the performance of 1-D spectrally-selective mirrors in monofacial Al BSF and PERC modules, and bifacial PERC modules. In monofacial modules, these mirrors offer >1.2% increase in energy yield compared to single-layer anti-reflection coatings, while cooling by over 1K on average. Mirrors reduced bifacial module parasitic absorption by up to 34 W/m2 out of 1240 W/m2 incident.