OFDM Receiver Using Deep Learning: Redundancy Issues

Marcele O. K. Mendonça, P. Diniz
{"title":"OFDM Receiver Using Deep Learning: Redundancy Issues","authors":"Marcele O. K. Mendonça, P. Diniz","doi":"10.23919/Eusipco47968.2020.9287725","DOIUrl":null,"url":null,"abstract":"To combat the inter-symbol interference (ISI) and the inter-block interference (IBI) caused by multi-path fading in orthogonal frequency-division multiplexing (OFDM) systems, it is usually recommended employing a cyclic prefix (CP) with length equal to the channel order. In some practical cases, however, the channel order is not exactly known. Looking for a balance between a full-sized CP and its absence, we investigate the redundancy issues and propose a minimum redundancy OFDM receiver using deep-learning (DL) tools. In this way, we can benefit from an improved reception performance, when compared with CP-free case, and also a better spectrum utilization when compared with the CP-OFDM case. Moreover, compared with the CP-free case, improved performance can be obtained even when the channel order is not available. Simulation results indicate that a good BER level can be achieved and the proposed technique can also be applied in other DL-based receivers.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"95 1","pages":"1687-1691"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To combat the inter-symbol interference (ISI) and the inter-block interference (IBI) caused by multi-path fading in orthogonal frequency-division multiplexing (OFDM) systems, it is usually recommended employing a cyclic prefix (CP) with length equal to the channel order. In some practical cases, however, the channel order is not exactly known. Looking for a balance between a full-sized CP and its absence, we investigate the redundancy issues and propose a minimum redundancy OFDM receiver using deep-learning (DL) tools. In this way, we can benefit from an improved reception performance, when compared with CP-free case, and also a better spectrum utilization when compared with the CP-OFDM case. Moreover, compared with the CP-free case, improved performance can be obtained even when the channel order is not available. Simulation results indicate that a good BER level can be achieved and the proposed technique can also be applied in other DL-based receivers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习的OFDM接收机:冗余问题
为了解决正交频分复用(OFDM)系统中由多径衰落引起的码间干扰(ISI)和块间干扰(IBI),通常建议采用长度与信道阶数相等的循环前缀(CP)。然而,在某些实际情况下,通道顺序并不完全清楚。为了在全尺寸CP和无冗余之间寻找平衡,我们研究了冗余问题,并使用深度学习(DL)工具提出了最小冗余OFDM接收器。通过这种方式,与无cp情况相比,我们可以获得更好的接收性能,与CP-OFDM情况相比,我们也可以获得更好的频谱利用率。此外,与无cp情况相比,即使在信道顺序不可用的情况下,也可以获得更好的性能。仿真结果表明,该方法可以获得较好的误码率,也可应用于其他基于dl的接收机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1