A Microscale Shear Wave Velocity Model of Earth-Rock Aggregate

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Annales De Chimie-science Des Materiaux Pub Date : 2020-08-20 DOI:10.18280/acsm.440310
Fei Zhang, Lixia Zhou, X. Sun, Peng Yuan
{"title":"A Microscale Shear Wave Velocity Model of Earth-Rock Aggregate","authors":"Fei Zhang, Lixia Zhou, X. Sun, Peng Yuan","doi":"10.18280/acsm.440310","DOIUrl":null,"url":null,"abstract":"Received: 19 March 2020 Accepted: 8 June 2020 With the recent construction boom, the stability of earth-rock aggregate (ERA) structures become a prominent problem. The ERA is essentially a heterogenous aggregate of randomly stacked particles of varied sizes, the gaps between which are filled with liquid and gas phases. However, the existing theories on geotechnical mechanics cannot accurately describe the mechanical behavior of this special material. To solve the problem, this paper treats the ERA as a set of as a set of randomly stacked spheres, which are equivalent to soil and rock particles in the ERA and have the same radius and material properties. Drawing on the particle contact theory, the total number of coarse particles in the ERA was calculated by the probability density function relative to the mean particle size (sieve diameter), followed by derivation of the equivalent radius of coarse particles. Next, the particle shape correction coefficient (PSCC) was introduced to obtain the equivalent shear modulus of the ERA, according to the relationship between mean stress in the ERA and the micro-contact force between particles. After that, the microscale formula of shear wave velocity was deduced from the macroscale formula. Finally, the effects of multiple parameters on shear wave velocity were quantified in details. The results show that the shear wave velocity of the ERA is greatly affected by the void ratio, elastic modulus, and the PSCC, but has little to do with effective internal friction angle, Poisson’s ratio, and coordination number of the ERA particles.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"9 1","pages":"223-229"},"PeriodicalIF":0.6000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Received: 19 March 2020 Accepted: 8 June 2020 With the recent construction boom, the stability of earth-rock aggregate (ERA) structures become a prominent problem. The ERA is essentially a heterogenous aggregate of randomly stacked particles of varied sizes, the gaps between which are filled with liquid and gas phases. However, the existing theories on geotechnical mechanics cannot accurately describe the mechanical behavior of this special material. To solve the problem, this paper treats the ERA as a set of as a set of randomly stacked spheres, which are equivalent to soil and rock particles in the ERA and have the same radius and material properties. Drawing on the particle contact theory, the total number of coarse particles in the ERA was calculated by the probability density function relative to the mean particle size (sieve diameter), followed by derivation of the equivalent radius of coarse particles. Next, the particle shape correction coefficient (PSCC) was introduced to obtain the equivalent shear modulus of the ERA, according to the relationship between mean stress in the ERA and the micro-contact force between particles. After that, the microscale formula of shear wave velocity was deduced from the macroscale formula. Finally, the effects of multiple parameters on shear wave velocity were quantified in details. The results show that the shear wave velocity of the ERA is greatly affected by the void ratio, elastic modulus, and the PSCC, but has little to do with effective internal friction angle, Poisson’s ratio, and coordination number of the ERA particles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土-石骨料的微尺度剪切波速模型
随着近年来的建设热潮,土石料(ERA)结构的稳定性问题日益突出。ERA本质上是由不同大小的随机堆积的颗粒组成的异质聚集体,它们之间的空隙充满了液相和气相。然而,现有的岩土力学理论并不能准确地描述这种特殊材料的力学行为。为了解决这一问题,本文将ERA视为一组随机堆叠的球体,这些球体相当于ERA中的土壤和岩石颗粒,具有相同的半径和材料性质。根据颗粒接触理论,通过相对于平均粒径(筛直径)的概率密度函数计算出ERA中粗颗粒总数,并推导出粗颗粒等效半径。其次,根据微粒间微接触力与微粒内平均应力的关系,引入微粒形状修正系数(PSCC),得到微粒间微接触力的等效剪切模量;在此基础上,由宏观尺度公式推导出微观尺度的横波速度公式。最后,详细量化了多个参数对横波速度的影响。结果表明:ERA的剪切波速受孔隙比、弹性模量和PSCC的影响较大,而与ERA颗粒的有效内摩擦角、泊松比和配位数的影响较小;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales De Chimie-science Des Materiaux
Annales De Chimie-science Des Materiaux 工程技术-材料科学:综合
CiteScore
1.70
自引率
25.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.
期刊最新文献
Mechanical and Thermal Characteristics of Concrete Reinforced with Crushed Glass and Glass Fiber: An Experimental Study Structural Performance of Reinforced Concrete Columns with Bracing Reinforcement Elevated Temperature Effects on Geo-Polymer Concrete: An Experimental and Numerical-Review Study Investigating the Mechanical and Thermal Properties of Concrete with Recycled Nanoplastics for Enhanced Sustainability Experimental Investigation on Using Electrical Cable Waste as Fine Aggregate and Reinforcing Fiber in Sustainable Mortar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1