Yi Shen, Jing-yu Hu, L. Lu, Chao Zhu, Qile Fang, Shuang Song
{"title":"Enhanced photocatalytic performance of S-doped covalent triazine framework for organic pollutant degradation","authors":"Yi Shen, Jing-yu Hu, L. Lu, Chao Zhu, Qile Fang, Shuang Song","doi":"10.1631/2023.A2200440","DOIUrl":null,"url":null,"abstract":"Photocatalysis using the abundant solar energy is an environmentally friendly and efficient way to degrade organic matter. Covalent triazine frameworks (CTFs), a new class of metal-free organic semiconductors responsive to visible light, are promising materials for water treatment. In this study, an original CTF, namely CTF-1, was modified by S-doping to form CTFSx, which were used as metal-free catalysts for degradation of methyl orange (MO) and bisphenol A (BPA). The outcomes demonstrated that the photocatalytic degradation of MO and BPA by CTFSx was superior to that by CTF-1, with better stability and reusability. Within 6 h, 53.2% MO and 84.7% BPA were degraded by CTFS5, and the degradation rate constants were 0.145 h−1 and 0.29 h−1, respectively, which were 3.6 and 5.8 times higher than those of CTF-1. Further investigation revealed that enhanced visible light absorption, a reduced degree of free carrier recombination, rapid separation and transfer of photogenerated electrons and holes, and improved ·OH oxidation capacity were important factors contributing to the significantly enhanced photocatalytic activity. The S-doping method effectively improved the light absorption performance, electronic structure, and modulation band structure of CTF-1. This work highlights the potential application of low-cost metal-free catalysts driven by visible light for the removal of organic pollutants from wastewater.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/2023.A2200440","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Photocatalysis using the abundant solar energy is an environmentally friendly and efficient way to degrade organic matter. Covalent triazine frameworks (CTFs), a new class of metal-free organic semiconductors responsive to visible light, are promising materials for water treatment. In this study, an original CTF, namely CTF-1, was modified by S-doping to form CTFSx, which were used as metal-free catalysts for degradation of methyl orange (MO) and bisphenol A (BPA). The outcomes demonstrated that the photocatalytic degradation of MO and BPA by CTFSx was superior to that by CTF-1, with better stability and reusability. Within 6 h, 53.2% MO and 84.7% BPA were degraded by CTFS5, and the degradation rate constants were 0.145 h−1 and 0.29 h−1, respectively, which were 3.6 and 5.8 times higher than those of CTF-1. Further investigation revealed that enhanced visible light absorption, a reduced degree of free carrier recombination, rapid separation and transfer of photogenerated electrons and holes, and improved ·OH oxidation capacity were important factors contributing to the significantly enhanced photocatalytic activity. The S-doping method effectively improved the light absorption performance, electronic structure, and modulation band structure of CTF-1. This work highlights the potential application of low-cost metal-free catalysts driven by visible light for the removal of organic pollutants from wastewater.
期刊介绍:
Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.