{"title":"Automatic Identification and Forecasting of Structural Unobserved Components Models with UComp","authors":"D. J. Pedregal","doi":"10.18637/jss.v103.i09","DOIUrl":null,"url":null,"abstract":"UComp is a powerful library for building unobserved components models, useful for forecasting and other important operations, such us de-trending, cycle analysis, seasonal adjustment, signal extraction, etc. One of the most outstanding features that makes UComp unique among its class of related software implementations is that models may be built automatically by identification algorithms (three versions are available). These algorithms select the best model among many possible combinations. Another relevant feature is that it is coded in C++ , opening the door to link it to different popular and widely used environments, like R , MATLAB , Octave , Python , etc. The implemented models for the components are more general than the usual ones in the field of unobserved components modeling, including different types of trend, cycle, seasonal and irregular components, input variables and outlier detection. The automatic character of the algorithms required the development of many complementary algorithms to control performance and make it applicable to as many different time series as possible. The library is open source and available in different formats in public repositories. The performance of the library is illustrated working on real data in several varied examples.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"77 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v103.i09","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
UComp is a powerful library for building unobserved components models, useful for forecasting and other important operations, such us de-trending, cycle analysis, seasonal adjustment, signal extraction, etc. One of the most outstanding features that makes UComp unique among its class of related software implementations is that models may be built automatically by identification algorithms (three versions are available). These algorithms select the best model among many possible combinations. Another relevant feature is that it is coded in C++ , opening the door to link it to different popular and widely used environments, like R , MATLAB , Octave , Python , etc. The implemented models for the components are more general than the usual ones in the field of unobserved components modeling, including different types of trend, cycle, seasonal and irregular components, input variables and outlier detection. The automatic character of the algorithms required the development of many complementary algorithms to control performance and make it applicable to as many different time series as possible. The library is open source and available in different formats in public repositories. The performance of the library is illustrated working on real data in several varied examples.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.