UniKV: Toward High-Performance and Scalable KV Storage in Mixed Workloads via Unified Indexing

Qiang Zhang, Yongkun Li, P. Lee, Yinlong Xu, Qiu Cui, L. Tang
{"title":"UniKV: Toward High-Performance and Scalable KV Storage in Mixed Workloads via Unified Indexing","authors":"Qiang Zhang, Yongkun Li, P. Lee, Yinlong Xu, Qiu Cui, L. Tang","doi":"10.1109/ICDE48307.2020.00034","DOIUrl":null,"url":null,"abstract":"Persistent key-value (KV) stores are mainly designed based on the Log-Structured Merge-tree (LSM-tree), which suffer from large read and write amplifications, especially when KV stores grow in size. Existing design optimizations for LSM-tree-based KV stores often make certain trade-offs and fail to simultaneously improve both the read and write performance on large KV stores without sacrificing scan performance. We design UniKV, which unifies the key design ideas of hash indexing and the LSM-tree in a single system. Specifically, UniKV leverages data locality to differentiate the indexing management of KV pairs. It also develops multiple techniques to tackle the issues caused by unifying the indexing techniques, so as to simultaneously improve the performance in reads, writes, and scans. Experiments show that UniKV significantly outperforms several state-of-the-art KV stores (e.g., LevelDB, RocksDB, HyperLevelDB, and PebblesDB) in overall throughput under read-write mixed workloads.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"14 1","pages":"313-324"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Persistent key-value (KV) stores are mainly designed based on the Log-Structured Merge-tree (LSM-tree), which suffer from large read and write amplifications, especially when KV stores grow in size. Existing design optimizations for LSM-tree-based KV stores often make certain trade-offs and fail to simultaneously improve both the read and write performance on large KV stores without sacrificing scan performance. We design UniKV, which unifies the key design ideas of hash indexing and the LSM-tree in a single system. Specifically, UniKV leverages data locality to differentiate the indexing management of KV pairs. It also develops multiple techniques to tackle the issues caused by unifying the indexing techniques, so as to simultaneously improve the performance in reads, writes, and scans. Experiments show that UniKV significantly outperforms several state-of-the-art KV stores (e.g., LevelDB, RocksDB, HyperLevelDB, and PebblesDB) in overall throughput under read-write mixed workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UniKV:通过统一索引在混合工作负载中实现高性能和可扩展的KV存储
持久性键值存储(Persistent key-value, KV)主要基于日志结构合并树(Log-Structured Merge-tree, LSM-tree)进行设计,但这种存储存在较大的读写放大,特别是当KV存储规模增长时。现有的基于lsm树的KV存储的设计优化通常会进行某些权衡,并且无法在不牺牲扫描性能的情况下同时提高大型KV存储的读写性能。我们设计了UniKV,它将哈希索引和lsm树的关键设计思想统一在一个系统中。具体来说,UniKV利用数据局部性来区分KV对的索引管理。它还开发了多种技术来解决由统一索引技术引起的问题,从而同时提高读、写和扫描的性能。实验表明,在读写混合工作负载下,UniKV在总体吞吐量方面明显优于几个最先进的KV存储(例如,LevelDB, RocksDB, HyperLevelDB和pebble)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1