{"title":"Coordination networks of Ag(I) and N,N′- bis(3-pyridinecarboxamide)-1,6-hexane: structures and anion exchange","authors":"S. Muthu, J. Yip, J. Vittal","doi":"10.1039/B206680G","DOIUrl":null,"url":null,"abstract":"A bidentate ligand N,N′- bis(3-pyridinecarboxamide)-1,6-hexane (L) and its silver complexes have been synthesized and characterized by single crystal X-ray diffraction. Reaction of AgClO4 and L in H2O/EtOH gives rise to a coordination polymer [Ag2L3OH][ClO4]·2.5H2O. The X-ray crystal structure of the compound shows honeycomb-like networks in which four-coordinated Ag ions are linked to three-coordinated Ag ions via three ligands L. The coordination of the long ligands L to the Ag ions creates tube-like structures and the tubes of adjacent honeycomb layers are interlocked, leading to an interpenetrating network. The compound [AgL][ClO4], synthesized from CH3OH, is composed of twisted zigzag coordination polymers in which ligands L are linked by Ag ions. Ligand L displays two different conformations A and B within a single strain of polymer. The two conformers differ in the orientation of the two pyridyl-groups which are arranged periodically in the polymer in the sequence ABBABBA. The polymer chains assemble into 2-D undulating sheets via amide hydrogen bonds. Reaction between AgNO3/AgCF3SO3 and L leads to polymeric compounds [AgL][NO3] and [AgL][CF3SO3]. The compounds are composed of coordination polymers in zigzag conformation and the polymer chains assemble into undulating sheets via inter-chain hydrogen bonds. The inter-sheet Ag–Ag distances of the compounds are in the order [AgL][CF3SO3] > [AgL][ClO4] > [AgL][NO3]. The anion exchange properties of the compounds are monitored by using X-ray powder diffraction, infrared spectroscopy and elemental analysis. Our results show that the anions in [AgL][NO3] and [AgL][CF3SO3] can be totally replaced with ClO4−. However, the exchange is not reversible. In additional, inter-conversion between [AgL][NO3] and [AgL][CF3SO3] by anion exchange is shown to be unfeasible. Anion selectivity could be due to the different hydration energy of the anions and the structural reorganization involved in the conversion.","PeriodicalId":17317,"journal":{"name":"Journal of The Chemical Society-dalton Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chemical Society-dalton Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B206680G","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147
Abstract
A bidentate ligand N,N′- bis(3-pyridinecarboxamide)-1,6-hexane (L) and its silver complexes have been synthesized and characterized by single crystal X-ray diffraction. Reaction of AgClO4 and L in H2O/EtOH gives rise to a coordination polymer [Ag2L3OH][ClO4]·2.5H2O. The X-ray crystal structure of the compound shows honeycomb-like networks in which four-coordinated Ag ions are linked to three-coordinated Ag ions via three ligands L. The coordination of the long ligands L to the Ag ions creates tube-like structures and the tubes of adjacent honeycomb layers are interlocked, leading to an interpenetrating network. The compound [AgL][ClO4], synthesized from CH3OH, is composed of twisted zigzag coordination polymers in which ligands L are linked by Ag ions. Ligand L displays two different conformations A and B within a single strain of polymer. The two conformers differ in the orientation of the two pyridyl-groups which are arranged periodically in the polymer in the sequence ABBABBA. The polymer chains assemble into 2-D undulating sheets via amide hydrogen bonds. Reaction between AgNO3/AgCF3SO3 and L leads to polymeric compounds [AgL][NO3] and [AgL][CF3SO3]. The compounds are composed of coordination polymers in zigzag conformation and the polymer chains assemble into undulating sheets via inter-chain hydrogen bonds. The inter-sheet Ag–Ag distances of the compounds are in the order [AgL][CF3SO3] > [AgL][ClO4] > [AgL][NO3]. The anion exchange properties of the compounds are monitored by using X-ray powder diffraction, infrared spectroscopy and elemental analysis. Our results show that the anions in [AgL][NO3] and [AgL][CF3SO3] can be totally replaced with ClO4−. However, the exchange is not reversible. In additional, inter-conversion between [AgL][NO3] and [AgL][CF3SO3] by anion exchange is shown to be unfeasible. Anion selectivity could be due to the different hydration energy of the anions and the structural reorganization involved in the conversion.