{"title":"A stochastic pattern generation and optimization framework for variation-tolerant, power-safe scan test","authors":"V. Devanathan, C. Ravikumar, V. Kamakoti","doi":"10.1109/TEST.2007.4437596","DOIUrl":null,"url":null,"abstract":"Process variation is an increasingly dominant phenomenon affecting both power and performance in sub-100 nm technologies. Cost considerations often do not permit over-designing the power supply infrastructure for test mode, considering the worst-case scenario. Test application must not over-exercise the power supply grids, lest the tests will damage the device or lead to false test failures. The problem of debugging a delay test failure can therefore be highly complex. We argue that false delay test failures can be avoided by generating \"safe\" patterns that are tolerant to on-chip variations. A statistical framework for power-safe pattern generation is proposed, which uses process variation information, power grid topology and regional constraints on switching activity. Experimental results are provided on benchmark circuits to demonstrate the effectiveness of the framework.","PeriodicalId":6403,"journal":{"name":"2007 IEEE International Test Conference","volume":"20 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2007.4437596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Process variation is an increasingly dominant phenomenon affecting both power and performance in sub-100 nm technologies. Cost considerations often do not permit over-designing the power supply infrastructure for test mode, considering the worst-case scenario. Test application must not over-exercise the power supply grids, lest the tests will damage the device or lead to false test failures. The problem of debugging a delay test failure can therefore be highly complex. We argue that false delay test failures can be avoided by generating "safe" patterns that are tolerant to on-chip variations. A statistical framework for power-safe pattern generation is proposed, which uses process variation information, power grid topology and regional constraints on switching activity. Experimental results are provided on benchmark circuits to demonstrate the effectiveness of the framework.