A Novel Technique for Improving the Performance of Ammonia Absorption Refrigeration Cycle

M. Shaker, M. Abd-Elhady, M. A. Halim
{"title":"A Novel Technique for Improving the Performance of Ammonia Absorption Refrigeration Cycle","authors":"M. Shaker, M. Abd-Elhady, M. A. Halim","doi":"10.1142/s2010132521500036","DOIUrl":null,"url":null,"abstract":"The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521500036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

The world is now living in an energy crisis. Refrigeration and air-conditioning systems have become the basics of daily life in various fields and accordingly, it cannot be dispensed. Refrigeration machines and air-conditioning systems are the most energy-consuming systems, independent on the application whether it is domestic, commercial, industrial or medical. Therefore, using cooling systems which are powered by thermal energy, e.g., solar energy, can save a lot of electrical energy. Absorption refrigeration system is an example of a refrigeration system powered by heat energy. However, the system problem here is that it has low coefficient of performance (COP). The objective of this research is to improve the COP of the ammonia absorption cycle. This is done in the absorber unit by improving the absorption of the refrigerant ammonia into the ammonia–water solution. The absorption efficiency is improved by using (1) a stirrer pump to improve mixing, (2) sprayers to increase the contact area between ammonia and ammonia–water solution and (3) continuous cooling of the solution during the absorption process via an external heat exchanger. The COP of the ammonia absorption cycle has increased from 0.48 to 0.715, i.e., by 49%. This is due to the improvement of the absorption of the ammonia into the ammonia–water solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种提高氨吸收式制冷循环性能的新技术
世界正处于能源危机之中。制冷和空调系统已经成为各个领域日常生活的基础,因此,它是不可分割的。制冷机和空调系统是最耗能的系统,无论其应用是家庭、商业、工业还是医疗。因此,使用以热能(如太阳能)为动力的冷却系统可以节省大量电能。吸收式制冷系统是一种以热能为动力的制冷系统。然而,这里的系统问题是它的性能系数(COP)很低。本研究的目的是提高氨吸收循环的COP。这是在吸收装置中通过提高制冷剂氨进入氨-水溶液的吸收来完成的。通过使用(1)搅拌泵来改善混合,(2)喷雾器来增加氨与氨水溶液的接触面积,以及(3)在吸收过程中通过外部热交换器对溶液进行连续冷却来提高吸收效率。氨吸收循环的COP由0.48提高到0.715,即提高了49%。这是由于氨水溶液对氨水的吸收得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
0
期刊介绍: As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.
期刊最新文献
Do ceiling fans in rooms help to reduce or disperse the transmission of breathing aerosols? Virtual design on the heat pump refrigeration cycle: challenges and approaches Performance analysis of a novel ejector-assisted condenser outlet split dual-evaporator refrigeration system Performance comparison of a standing-wave thermoacoustic engine with different resonator shapes with air working gas Computational fluid dynamic simulation of packed bed drying process: impact of particle properties, drying conditions, and lateral edge heating modes on drying kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1