Jingjin Li, Shijun Ji, Ji Zhao, Fei Yuan, Handa Dai
{"title":"Machining precision controlling method for plane surface assisted by SPDT","authors":"Jingjin Li, Shijun Ji, Ji Zhao, Fei Yuan, Handa Dai","doi":"10.1177/2634983321995509","DOIUrl":null,"url":null,"abstract":"In traditional processing mode, a given lathe and a set of fixed processing system can only produce a predetermined precision part. This article proposes a machining method that can control the surface precision of machining plane parts, and four gaskets with different accuracy requirements are processed on the same slow tool servo single-point diamond lathe for experimental verification. Then, the Peak Village (PV) value and surface topography of the processed parts were measured using the surface profiler Taylor Hobson PGI 1240 and Keyence VR-3200, respectively. Through the processing and analysis of the measured data, the maximum deviation between the PV value and the given PV value is 2.4 µm, the minimum deviation is 0.4 µm. And the PV value obtained by calculating the helical spacing measured by surface topography according to the method in this article is approximately equal to the measured PV value, so the correctness of the machining method is verified. Therefore, the machining method can control the surface accuracy of machining parts accurately according to the required accuracy.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2634983321995509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional processing mode, a given lathe and a set of fixed processing system can only produce a predetermined precision part. This article proposes a machining method that can control the surface precision of machining plane parts, and four gaskets with different accuracy requirements are processed on the same slow tool servo single-point diamond lathe for experimental verification. Then, the Peak Village (PV) value and surface topography of the processed parts were measured using the surface profiler Taylor Hobson PGI 1240 and Keyence VR-3200, respectively. Through the processing and analysis of the measured data, the maximum deviation between the PV value and the given PV value is 2.4 µm, the minimum deviation is 0.4 µm. And the PV value obtained by calculating the helical spacing measured by surface topography according to the method in this article is approximately equal to the measured PV value, so the correctness of the machining method is verified. Therefore, the machining method can control the surface accuracy of machining parts accurately according to the required accuracy.