Ali Najmabadi, Kishan Srinivasan, P. Seiler, H. Hofmann
{"title":"A Robust Vector Control of Permanent Magnet Synchronous Machines Resilient to Parameter Uncertainty","authors":"Ali Najmabadi, Kishan Srinivasan, P. Seiler, H. Hofmann","doi":"10.1109/COMPEL52896.2023.10221116","DOIUrl":null,"url":null,"abstract":"Accurate flux estimation is important for high-performance control of the Permanent Magnet Synchronous Machines (PMSMs). Parameter uncertainty reduces this accuracy and degrades the controller’s performance. This paper presents a vector control of PMSMs which utilizes a combination of the flux estimation based on current and voltage models of PMSMs via a weighting factor to ensure the best performance at all speeds for excitation at dominant frequencies. The weighting factor can be chosen so that the controller can effectively act as a flux regulator or a current regulator. Furthermore, this paper introduces a framework to formulate the system dynamics suitable for robust analysis and determine the Worst Case Gain (WCG) of the reference tracking transfer function of the closed loop system. The weighting factor is optimized in order to minimize the WCG in presence of parameter uncertainty for inductances and resistance. Using this analysis, the proposed regulator can benefit from the optimal blending of the two flux estimation methods and is robust to parameter uncertainty compared to conventional current and flux regulators.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"26 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221116","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate flux estimation is important for high-performance control of the Permanent Magnet Synchronous Machines (PMSMs). Parameter uncertainty reduces this accuracy and degrades the controller’s performance. This paper presents a vector control of PMSMs which utilizes a combination of the flux estimation based on current and voltage models of PMSMs via a weighting factor to ensure the best performance at all speeds for excitation at dominant frequencies. The weighting factor can be chosen so that the controller can effectively act as a flux regulator or a current regulator. Furthermore, this paper introduces a framework to formulate the system dynamics suitable for robust analysis and determine the Worst Case Gain (WCG) of the reference tracking transfer function of the closed loop system. The weighting factor is optimized in order to minimize the WCG in presence of parameter uncertainty for inductances and resistance. Using this analysis, the proposed regulator can benefit from the optimal blending of the two flux estimation methods and is robust to parameter uncertainty compared to conventional current and flux regulators.
期刊介绍:
COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.