New efficient speed-up scheme for cascade implementation of SVM classifier

Jeonghyun Baek, Jisu Kim, Junhyuk Hyun, Euntai Kim
{"title":"New efficient speed-up scheme for cascade implementation of SVM classifier","authors":"Jeonghyun Baek, Jisu Kim, Junhyuk Hyun, Euntai Kim","doi":"10.1109/IJCNN.2015.7280810","DOIUrl":null,"url":null,"abstract":"For intelligent vehicle applications, detecting pedestrian technique must be robust and perform in real time. In pedestrian detection, support vector machine (SVM) is one of the popular classifiers because of its robust performance. In this paper, we propose the new method to implement cascade SVM that enables fast rejection of negative samples. The proposed method is tested with INRIA person dataset and show better rejection performance of negative samples than conventional method.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For intelligent vehicle applications, detecting pedestrian technique must be robust and perform in real time. In pedestrian detection, support vector machine (SVM) is one of the popular classifiers because of its robust performance. In this paper, we propose the new method to implement cascade SVM that enables fast rejection of negative samples. The proposed method is tested with INRIA person dataset and show better rejection performance of negative samples than conventional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的支持向量机分类器级联实现的高效加速方案
在智能车辆应用中,行人检测技术必须具有鲁棒性和实时性。在行人检测中,支持向量机(SVM)因其鲁棒性而成为常用的分类器之一。在本文中,我们提出了一种新的方法来实现串级支持向量机,使负样本的快速拒绝。用INRIA人数据集对该方法进行了测试,结果表明该方法对负样本的抑制效果优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1