Hydrocarbon Compatible SOFC Anode Catalysts and Their Syntheses: A Review

S. Senthil Kumar, S. Aruna
{"title":"Hydrocarbon Compatible SOFC Anode Catalysts and Their Syntheses: A Review","authors":"S. Senthil Kumar, S. Aruna","doi":"10.3390/suschem2040039","DOIUrl":null,"url":null,"abstract":"With the fast depleting rate of fossil fuels, the whole world is looking for promising energy sources for the future, and fuel cells are perceived as futuristic energy sources. Out of the different varieties of fuel cells, solid oxide fuel cells (SOFCs) are promising due to their unique multi-fuel operating capability without the need for an external reformer. Nonetheless, the state-of-the-art anode material Ni–YSZ undergoes carburization in presence of hydrocarbons (HCs), resulting in performance degradation. Several strategies have been explored by researchers to overcome the issue of carburization of the anode. The important strategies include reducing SOFC operating temperature, adjustment of steam: carbon ratio, and use of alternate anode catalysts. Among these, the use of alternate anodes is a promising strategy. Apart from the carburization issue, the anode can also undergo sulfur poisoning. The present review discusses carburization and sulfur poisoning issues and the different strategies that can be adopted for tackling them. The quintessence of this review is to provide greater insight into the various developments in hydrocarbon compatible anode catalysts and into the synthesis routes employed for the synthesis of hydrocarbon compatible anodes.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":"30 19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem2040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

With the fast depleting rate of fossil fuels, the whole world is looking for promising energy sources for the future, and fuel cells are perceived as futuristic energy sources. Out of the different varieties of fuel cells, solid oxide fuel cells (SOFCs) are promising due to their unique multi-fuel operating capability without the need for an external reformer. Nonetheless, the state-of-the-art anode material Ni–YSZ undergoes carburization in presence of hydrocarbons (HCs), resulting in performance degradation. Several strategies have been explored by researchers to overcome the issue of carburization of the anode. The important strategies include reducing SOFC operating temperature, adjustment of steam: carbon ratio, and use of alternate anode catalysts. Among these, the use of alternate anodes is a promising strategy. Apart from the carburization issue, the anode can also undergo sulfur poisoning. The present review discusses carburization and sulfur poisoning issues and the different strategies that can be adopted for tackling them. The quintessence of this review is to provide greater insight into the various developments in hydrocarbon compatible anode catalysts and into the synthesis routes employed for the synthesis of hydrocarbon compatible anodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烃类相容性SOFC阳极催化剂及其合成研究进展
随着化石燃料的快速消耗,全世界都在寻找未来有前途的能源,燃料电池被认为是未来的能源。在不同种类的燃料电池中,固体氧化物燃料电池(sofc)因其独特的多燃料运行能力而无需外部重整器而备受青睐。然而,最先进的负极材料Ni-YSZ在碳氢化合物(hc)存在的情况下会渗碳,导致性能下降。研究人员已经探索了几种策略来克服阳极的渗碳问题。降低SOFC的工作温度、调整汽碳比和使用备用阳极催化剂是重要的策略。其中,交替阳极的使用是一种很有前途的策略。除了渗碳问题,阳极也可能发生硫中毒。本文讨论了渗碳和硫中毒问题以及解决这些问题的不同策略。本综述的主要目的是对烃类相容阳极催化剂的各种发展和烃类相容阳极的合成路线提供更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aqueous Solution of Ionic Liquid Is an Efficient Substituting Solvent System for the Extraction of Alginate from Sargassum tenerrimum The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy Recent Progress in Turning Waste into Catalysts for Green Syntheses A Perspective on Solar-Driven Electrochemical Routes for Sustainable Methanol Production Waste Lignocellulosic Biomass as a Source for Bioethanol Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1