SiRnn: A Math Library for Secure RNN Inference

Deevashwer Rathee, Mayank Rathee, R. Goli, Divya Gupta, Rahul Sharma, Nishanth Chandran, Aseem Rastogi
{"title":"SiRnn: A Math Library for Secure RNN Inference","authors":"Deevashwer Rathee, Mayank Rathee, R. Goli, Divya Gupta, Rahul Sharma, Nishanth Chandran, Aseem Rastogi","doi":"10.1109/SP40001.2021.00086","DOIUrl":null,"url":null,"abstract":"Complex machine learning (ML) inference algorithms like recurrent neural networks (RNNs) use standard functions from math libraries like exponentiation, sigmoid, tanh, and reciprocal of square root. Although prior work on secure 2-party inference provides specialized protocols for convolutional neural networks (CNNs), existing secure implementations of these math operators rely on generic 2-party computation (2PC) protocols that suffer from high communication. We provide new specialized 2PC protocols for math functions that crucially rely on lookup-tables and mixed-bitwidths to address this performance overhead; our protocols for math functions communicate up to 423× less data than prior work. Furthermore, our math implementations are numerically precise, which ensures that the secure implementations preserve model accuracy of cleartext. We build on top of our novel protocols to build SiRnn, a library for end-to-end secure 2-party DNN inference, that provides the first secure implementations of an RNN operating on time series sensor data, an RNN operating on speech data, and a state-of-the-art ML architecture that combines CNNs and RNNs for identifying all heads present in images. Our evaluation shows that SiRnn achieves up to three orders of magnitude of performance improvement when compared to inference of these models using an existing state-of-the-art 2PC framework.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"13 1","pages":"1003-1020"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Complex machine learning (ML) inference algorithms like recurrent neural networks (RNNs) use standard functions from math libraries like exponentiation, sigmoid, tanh, and reciprocal of square root. Although prior work on secure 2-party inference provides specialized protocols for convolutional neural networks (CNNs), existing secure implementations of these math operators rely on generic 2-party computation (2PC) protocols that suffer from high communication. We provide new specialized 2PC protocols for math functions that crucially rely on lookup-tables and mixed-bitwidths to address this performance overhead; our protocols for math functions communicate up to 423× less data than prior work. Furthermore, our math implementations are numerically precise, which ensures that the secure implementations preserve model accuracy of cleartext. We build on top of our novel protocols to build SiRnn, a library for end-to-end secure 2-party DNN inference, that provides the first secure implementations of an RNN operating on time series sensor data, an RNN operating on speech data, and a state-of-the-art ML architecture that combines CNNs and RNNs for identifying all heads present in images. Our evaluation shows that SiRnn achieves up to three orders of magnitude of performance improvement when compared to inference of these models using an existing state-of-the-art 2PC framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
安全RNN推理的数学库
复杂的机器学习(ML)推理算法,如循环神经网络(rnn),使用数学库中的标准函数,如幂运算、sigmoid、tanh和平方根的倒数。尽管之前在安全两方推理方面的工作为卷积神经网络(cnn)提供了专门的协议,但这些数学运算符的现有安全实现依赖于高通信的通用两方计算(2PC)协议。我们为数学函数提供了新的专门的2PC协议,这些函数非常依赖于查找表和混合位宽来解决这种性能开销;我们的数学函数协议比以前的工作少了423倍的数据。此外,我们的数学实现在数字上是精确的,这确保了安全实现保持了明文的模型准确性。我们在新协议的基础上构建SiRnn,这是一个端到端安全的2方DNN推理库,它提供了在时间序列传感器数据上操作的RNN的第一个安全实现,在语音数据上操作的RNN,以及结合cnn和RNN的最先进的ML架构,用于识别图像中存在的所有头部。我们的评估表明,与使用现有最先进的2PC框架的这些模型的推理相比,SiRnn实现了高达三个数量级的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A2L: Anonymous Atomic Locks for Scalability in Payment Channel Hubs High-Assurance Cryptography in the Spectre Era An I/O Separation Model for Formal Verification of Kernel Implementations Trust, But Verify: A Longitudinal Analysis Of Android OEM Compliance and Customization HackEd: A Pedagogical Analysis of Online Vulnerability Discovery Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1