A Comparative Study on Barrier Option Pricing using Antithetic and Quasi Monte-Carlo Simulations

Nneka Umeorah, Phillip Mashele
{"title":"A Comparative Study on Barrier Option Pricing using Antithetic and Quasi Monte-Carlo Simulations","authors":"Nneka Umeorah, Phillip Mashele","doi":"10.3844/JMSSP.2018.94.106","DOIUrl":null,"url":null,"abstract":"Monte-Carlo simulations have been utilized greatly in the pricing of derivative securities. Over the years, several variance reduction techniques have been developed to curb the instability, as well as, increase the simulation e?ciencies of the Monte-Carlo methods. Our approach in this research work will consider the use of antithetic variate techniques to estimate the fair prices of barrier options. Next, we use the quasi-Monte Carlo method, together with Sobol sequence to estimate the values of the same option. An extended version of the Black-Scholes model will serve as basis for the exact prices of these exotic options. The resulting simulated prices will be compared to the exact prices. The research concludes by showing some results which proves that when random numbers are generated via low discrepancy sequences in contrast to the normal pseudo-random numbers, a more efficient simulation method is ensued. This is further applicable in pricing complex derivatives without closed formsolutions.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"146 1","pages":"94-106"},"PeriodicalIF":0.3000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2018.94.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Monte-Carlo simulations have been utilized greatly in the pricing of derivative securities. Over the years, several variance reduction techniques have been developed to curb the instability, as well as, increase the simulation e?ciencies of the Monte-Carlo methods. Our approach in this research work will consider the use of antithetic variate techniques to estimate the fair prices of barrier options. Next, we use the quasi-Monte Carlo method, together with Sobol sequence to estimate the values of the same option. An extended version of the Black-Scholes model will serve as basis for the exact prices of these exotic options. The resulting simulated prices will be compared to the exact prices. The research concludes by showing some results which proves that when random numbers are generated via low discrepancy sequences in contrast to the normal pseudo-random numbers, a more efficient simulation method is ensued. This is further applicable in pricing complex derivatives without closed formsolutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反蒙特卡罗和拟蒙特卡罗模拟的障碍期权定价比较研究
蒙特卡罗模拟在衍生证券的定价中得到了广泛的应用。多年来,已经开发了几种减少方差的技术来抑制不稳定性,以及增加模拟精度。蒙特卡罗方法的优点。我们在这项研究工作中的方法将考虑使用对立变量技术来估计障碍期权的公平价格。接下来,我们使用拟蒙特卡罗方法,结合Sobol序列来估计相同选项的值。布莱克-斯科尔斯模型的扩展版本将作为这些奇异期权的确切价格的基础。得到的模拟价格将与实际价格进行比较。研究结果表明,与普通伪随机数相比,通过低差异序列生成随机数是一种更有效的模拟方法。这进一步适用于没有封闭形式解的复杂衍生品的定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
期刊最新文献
Multivariate Option Pricing with Gaussian Mixture Distributions and Mixed Copulas Stochastic Model for Pricing Normal Bonds when Maturity Periods Cross Over to Pandemic Period Measurable Functional Calculi and Spectral Theory Elements of Formal Probabilistic Mechanics Chlodowsky Type (λ, q)-Bernstein Stancu Operator of Korovkin-Type Approximation Theorem of Rough I-Core of Triple Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1