Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, R. A. Popa
{"title":"Merkle2: A Low-Latency Transparency Log System","authors":"Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, R. A. Popa","doi":"10.1109/SP40001.2021.00088","DOIUrl":null,"url":null,"abstract":"Transparency logs are designed to help users audit untrusted servers. For example, Certificate Transparency (CT) enables users to detect when a compromised Certificate Authority (CA) has issued a fake certificate. Practical state-of-the-art transparency log systems, however, suffer from high monitoring costs when used for low-latency applications. To reduce monitoring costs, such systems often require users to wait an hour or more for their updates to take effect, inhibiting low-latency applications. We propose Merkle2, a transparency log system that supports both efficient monitoring and low-latency updates. To achieve this goal, we construct a new multi-dimensional, authenticated data structure that nests two types of Merkle trees, hence the name of our system, Merkle2. Using this data structure, we then design a transparency log system with efficient monitoring and lookup protocols that enables low-latency updates. In particular, all the operations in Merkle2 are independent of update intervals and are (poly)logarithmic to the number of entries in the log. Merkle2 not only has excellent asymptotics when compared to prior work, but is also efficient in practice. Our evaluation shows that Merkle2 propagates updates in as little as 1 second and can support 100× more users than state-of-the-art transparency logs.","PeriodicalId":6786,"journal":{"name":"2021 IEEE Symposium on Security and Privacy (SP)","volume":"10 1","pages":"285-303"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40001.2021.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Transparency logs are designed to help users audit untrusted servers. For example, Certificate Transparency (CT) enables users to detect when a compromised Certificate Authority (CA) has issued a fake certificate. Practical state-of-the-art transparency log systems, however, suffer from high monitoring costs when used for low-latency applications. To reduce monitoring costs, such systems often require users to wait an hour or more for their updates to take effect, inhibiting low-latency applications. We propose Merkle2, a transparency log system that supports both efficient monitoring and low-latency updates. To achieve this goal, we construct a new multi-dimensional, authenticated data structure that nests two types of Merkle trees, hence the name of our system, Merkle2. Using this data structure, we then design a transparency log system with efficient monitoring and lookup protocols that enables low-latency updates. In particular, all the operations in Merkle2 are independent of update intervals and are (poly)logarithmic to the number of entries in the log. Merkle2 not only has excellent asymptotics when compared to prior work, but is also efficient in practice. Our evaluation shows that Merkle2 propagates updates in as little as 1 second and can support 100× more users than state-of-the-art transparency logs.