{"title":"Working with ARMs","authors":"G. Gottlob, R. Pichler","doi":"10.1006/INCO.2000.2915","DOIUrl":null,"url":null,"abstract":"An atomic representation of a Herbrand model (ARM) is a finite set of (not necessarily ground) atoms over a given Herbrand universe. Each ARM represents a possibly infinite Herbrand interpretation. This concept has emerged independently in different branches of computer science as a natural and useful generalization of the concept of finite Herbrand interpretation. It was shown that several recursively decidable problems on finite Herbrand models (or interpretations) remain decidable on ARMs.The following problems are essential when working with ARMs: Deciding the equivalence of two ARMs, deciding subsumption between ARMs, and evaluating clauses over ARMs. These problems were shown to be decidable, but their computational complexity has remained obscure so far. The previously published decision algorithms require exponential space. In this paper, we prove that all mentioned problems are coNP-complete.","PeriodicalId":54524,"journal":{"name":"Quantum Information & Computation","volume":"46 1","pages":"183-207"},"PeriodicalIF":0.7000,"publicationDate":"2001-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information & Computation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1006/INCO.2000.2915","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
An atomic representation of a Herbrand model (ARM) is a finite set of (not necessarily ground) atoms over a given Herbrand universe. Each ARM represents a possibly infinite Herbrand interpretation. This concept has emerged independently in different branches of computer science as a natural and useful generalization of the concept of finite Herbrand interpretation. It was shown that several recursively decidable problems on finite Herbrand models (or interpretations) remain decidable on ARMs.The following problems are essential when working with ARMs: Deciding the equivalence of two ARMs, deciding subsumption between ARMs, and evaluating clauses over ARMs. These problems were shown to be decidable, but their computational complexity has remained obscure so far. The previously published decision algorithms require exponential space. In this paper, we prove that all mentioned problems are coNP-complete.
期刊介绍:
Quantum Information & Computation provides a forum for distribution of information in all areas of quantum information processing. Original articles, survey articles, reviews, tutorials, perspectives, and correspondences are all welcome. Computer science, physics and mathematics are covered. Both theory and experiments are included. Illustrative subjects include quantum algorithms, quantum information theory, quantum complexity theory, quantum cryptology, quantum communication and measurements, proposals and experiments on the implementation of quantum computation, communications, and entanglement in all areas of science including ion traps, cavity QED, photons, nuclear magnetic resonance, and solid-state proposals.