Efficient Interactive Proofs for Non-Deterministic Bounded Space

Joshua Cook, R. Rothblum
{"title":"Efficient Interactive Proofs for Non-Deterministic Bounded Space","authors":"Joshua Cook, R. Rothblum","doi":"10.4230/LIPIcs.APPROX/RANDOM.2023.47","DOIUrl":null,"url":null,"abstract":"The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time ˜ O ( n + S 2 ). This improves on the best previous bound of ˜ O ( n + S 3 ) and matches the result for deterministic space bounded algorithms, up to polylog( S ) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T , space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time ˜ O ( n + S log( T ) + Sd ) and the prover runs in time 2 O ( S ) . For d = O (log( T )), this matches the best known interactive proofs for deterministic algorithms, up to polylog( S ) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log( T ). We also improve the best prior verifier time for unbounded alternations by a factor of S . Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time ˜ O ( n + S 2 ). This improves on the best previous bound of ˜ O ( n + S 3 ) and matches the result for deterministic space bounded algorithms, up to polylog( S ) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T , space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time ˜ O ( n + S log( T ) + Sd ) and the prover runs in time 2 O ( S ) . For d = O (log( T )), this matches the best known interactive proofs for deterministic algorithms, up to polylog( S ) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log( T ). We also improve the best prior verifier time for unbounded alternations by a factor of S . Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非确定性有界空间的有效交互证明
著名的IP = PSPACE定理为任何有界空间算法提供了一个有效的交互式证明。在这项工作中,我们研究了非确定性有界空间计算的交互证明。虽然Savitch定理表明非确定性有界空间算法可以用确定性有界空间算法来模拟,但这种模拟具有二次元开销。我们直接给出了不确定性算法的交互协议,以获得更快的验证器。更具体地说,对于任何不确定的空间S算法,我们构造了一个交互式证明,其中验证者运行时间为~ O (n + s2)。这改进了最好的前界~ O (n + s3),并匹配确定性空间有界算法的结果,最多可达polylog(S)因子。我们进一步推广到交替有界空间算法。对于任何语言L由时间T决定,空间S算法使用d个交替,我们构造了一个交互式证明,其中验证者运行时间为~ O (n + S log(T) + Sd),证明者运行时间为2o (S)。对于d = O (log(T)),这与确定性算法中最著名的交互式证明相匹配,最多可达log(S)因子,并将非确定性算法的先前最佳验证器时间提高了log(T)因子。我们还将无界变更的最佳先验验证时间提高了S倍。利用已知的有界交替算法与有界深度电路的连接,我们也获得了具有无界扇入的有界深度电路的更快验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dependency schemes in CDCL-based QBF solving: a proof-theoretic study On blocky ranks of matrices Fractional Linear Matroid Matching is in quasi-NC Aaronson-Ambainis Conjecture Is True For Random Restrictions Optimal Pseudorandom Generators for Low-Degree Polynomials Over Moderately Large Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1