{"title":"Performance Study of a Bat Searching Algorithm From System Dynamics Perspective","authors":"Haopeng Zhang, N. Schutte","doi":"10.1115/dscc2019-9017","DOIUrl":null,"url":null,"abstract":"\n In this paper, the performance of a bat searching algorithm is studied from system dynamics point of view. Bat searching algorithm (BA) is a recently developed swarm intelligence based optimization algorithm which has shown great success when solving complicated optimization problems. Each bat in the BA has two main states: velocity and position. The position represents the solution of the optimization problems while the velocity represents the searching direction and step size during each iteration. Due to the nature of the update equations, the dynamics of the bats are formulated as a group of second-order discrete-time systems. In this paper, the performance of the algorithm is analyzed based on the nature of the responses in the second-order systems. The over-damped response, under-damped responses are studied and the parameters requirements are derived. Moreover, unstable scenarios of the bats are also considered when examining the performance of the algorithm. Numerical evaluations are conducted to test different choices of the parameters in the BA.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the performance of a bat searching algorithm is studied from system dynamics point of view. Bat searching algorithm (BA) is a recently developed swarm intelligence based optimization algorithm which has shown great success when solving complicated optimization problems. Each bat in the BA has two main states: velocity and position. The position represents the solution of the optimization problems while the velocity represents the searching direction and step size during each iteration. Due to the nature of the update equations, the dynamics of the bats are formulated as a group of second-order discrete-time systems. In this paper, the performance of the algorithm is analyzed based on the nature of the responses in the second-order systems. The over-damped response, under-damped responses are studied and the parameters requirements are derived. Moreover, unstable scenarios of the bats are also considered when examining the performance of the algorithm. Numerical evaluations are conducted to test different choices of the parameters in the BA.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.