Reversible data hiding for encrypted image based on adaptive prediction error coding

Zhenjun Tang, M. Pang, Chunqiang Yu, Guijin Fan, Xianquan Zhang
{"title":"Reversible data hiding for encrypted image based on adaptive prediction error coding","authors":"Zhenjun Tang, M. Pang, Chunqiang Yu, Guijin Fan, Xianquan Zhang","doi":"10.1049/IPR2.12252","DOIUrl":null,"url":null,"abstract":"Reversible data hiding (RDH) is a useful technique of data security. Embedding capacity is one of the most important performance of RDH for encrypted image. Many existing RDH algorithms for encrypted image do not reach desirable embedding capacity yet. To address this problem, a new RDH algorithm is proposed for encrypted image based on adaptive prediction error coding. The proposed RDH algorithm uses a block-based encryption scheme to preserve spatial correlation of original image in the encrypted domain and exploits a novel technique called adaptive prediction error coding to vacate room for data embedding. A key contribution of the proposed RDH algorithm is the adaptive prediction error coding. It can efficiently vacate room from encrypted image block by adaptively coding prediction errors according to block content and thus contributes to a large embedding capacity. Many experiments on benchmark image databases are done to validate performance of the proposed RDH algorithm. The results show that the average embedding rates on the open databases of UCID, BOSSBase and BOWS-2 are 1.7081, 2.4437 and 2.3083 bpp, respectively. Comparison results illustrate that the proposed RDH algorithm outperforms some state-of-the-art RDH algorithms in embedding capacity.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"1 1","pages":"2643-2655"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IPR2.12252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Reversible data hiding (RDH) is a useful technique of data security. Embedding capacity is one of the most important performance of RDH for encrypted image. Many existing RDH algorithms for encrypted image do not reach desirable embedding capacity yet. To address this problem, a new RDH algorithm is proposed for encrypted image based on adaptive prediction error coding. The proposed RDH algorithm uses a block-based encryption scheme to preserve spatial correlation of original image in the encrypted domain and exploits a novel technique called adaptive prediction error coding to vacate room for data embedding. A key contribution of the proposed RDH algorithm is the adaptive prediction error coding. It can efficiently vacate room from encrypted image block by adaptively coding prediction errors according to block content and thus contributes to a large embedding capacity. Many experiments on benchmark image databases are done to validate performance of the proposed RDH algorithm. The results show that the average embedding rates on the open databases of UCID, BOSSBase and BOWS-2 are 1.7081, 2.4437 and 2.3083 bpp, respectively. Comparison results illustrate that the proposed RDH algorithm outperforms some state-of-the-art RDH algorithms in embedding capacity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应预测误差编码的加密图像可逆数据隐藏
可逆数据隐藏(RDH)是一种有效的数据安全技术。嵌入容量是RDH加密图像最重要的性能之一。现有的许多加密图像RDH算法都没有达到理想的嵌入容量。针对这一问题,提出了一种基于自适应预测误差编码的加密图像RDH算法。提出的RDH算法采用基于块的加密方案来保持原始图像在加密域中的空间相关性,并利用自适应预测错误编码技术为数据嵌入腾出空间。提出的RDH算法的一个关键贡献是自适应预测误差编码。该算法根据图像块的内容对预测误差进行自适应编码,从而有效地从加密图像块中腾出空间,具有较大的嵌入容量。在基准图像数据库上进行了大量实验,验证了RDH算法的性能。结果表明,在UCID、BOSSBase和BOWS-2开放数据库上的平均嵌入率分别为1.7081、2.4437和2.3083 bpp。对比结果表明,本文提出的RDH算法在嵌入容量上优于一些现有的RDH算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mask-Guided Image Person Removal with Data Synthesis EDAfuse: A encoder-decoder with atrous spatial pyramid network for infrared and visible image fusion Visible part prediction and temporal calibration for pedestrian detection STDC-MA Network for Semantic Segmentation Multi-similarity based Hyperrelation Network for few-shot segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1