{"title":"Hygro-mechanical model for concrete pavement with long-term drying analysis","authors":"J. Veselý, V. Šmilauer","doi":"10.14311/app.2023.40.0104","DOIUrl":null,"url":null,"abstract":"Concrete pavements are subjected to the combination of moisture transport, heat transport and traffic loading. A hygro-mechanical 3D finite element model was created in OOFEM software in order to analyse the stress field and deformed shape from a long-term non-uniform drying. The model uses a staggered approach, solving moisture transfer weakly coupled with MPS viscoelastic model for ageing concrete creep and shrinkage. Moisture transport and mechanical sub-models are calibrated with lab experiments, long-term monitoring on D1 highway and data from 40 year old highway pavement. The slab geometry is 3.5×5.0×0.29 m, resting on elastic Winkler-Pasternak foundation. The validation covers autogenous and drying strain on the slab. The models predict drying-induced tensile stress up to 3.3 MPa, inducing additional loading on the slab, uncaptured by current design methods.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":"24 25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2023.40.0104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete pavements are subjected to the combination of moisture transport, heat transport and traffic loading. A hygro-mechanical 3D finite element model was created in OOFEM software in order to analyse the stress field and deformed shape from a long-term non-uniform drying. The model uses a staggered approach, solving moisture transfer weakly coupled with MPS viscoelastic model for ageing concrete creep and shrinkage. Moisture transport and mechanical sub-models are calibrated with lab experiments, long-term monitoring on D1 highway and data from 40 year old highway pavement. The slab geometry is 3.5×5.0×0.29 m, resting on elastic Winkler-Pasternak foundation. The validation covers autogenous and drying strain on the slab. The models predict drying-induced tensile stress up to 3.3 MPa, inducing additional loading on the slab, uncaptured by current design methods.