Properties of the affine-invariant ensemble sampler's ‘stretch move’ in high dimensions

Pub Date : 2022-02-02 DOI:10.1111/anzs.12358
David Huijser, Jesse Goodman, Brendon J. Brewer
{"title":"Properties of the affine-invariant ensemble sampler's ‘stretch move’ in high dimensions","authors":"David Huijser,&nbsp;Jesse Goodman,&nbsp;Brendon J. Brewer","doi":"10.1111/anzs.12358","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present theoretical and practical properties of the affine-invariant ensemble sampler Markov Chain Monte Carlo method. In high dimensions, the sampler's ‘stretch move’ has unusual and undesirable properties. We demonstrate this with an <i>n</i>-dimensional correlated Gaussian toy problem with a known mean and covariance structure, and a multivariate version of the Rosenbrock problem. Visual inspection of a trace plots suggests the burn-in period is short. Upon closer inspection, we discover the mean and the variance of the target distribution do not match the known values, and the chain takes a very long time to converge. This problem becomes severe as <i>n</i> increases beyond 50. We also applied different diagnostics adapted to be applicable to ensemble methods to determine any lack of convergence. The diagnostics include the Gelman–Rubin method, the Heidelberger–Welch test, the integrated autocorrelation and the acceptance rate. The trace plot of individual walkers appears to be useful as well. We therefore conclude that the stretch move should be used with caution in moderate to high dimensions. We also present some heuristic results explaining this behaviour.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present theoretical and practical properties of the affine-invariant ensemble sampler Markov Chain Monte Carlo method. In high dimensions, the sampler's ‘stretch move’ has unusual and undesirable properties. We demonstrate this with an n-dimensional correlated Gaussian toy problem with a known mean and covariance structure, and a multivariate version of the Rosenbrock problem. Visual inspection of a trace plots suggests the burn-in period is short. Upon closer inspection, we discover the mean and the variance of the target distribution do not match the known values, and the chain takes a very long time to converge. This problem becomes severe as n increases beyond 50. We also applied different diagnostics adapted to be applicable to ensemble methods to determine any lack of convergence. The diagnostics include the Gelman–Rubin method, the Heidelberger–Welch test, the integrated autocorrelation and the acceptance rate. The trace plot of individual walkers appears to be useful as well. We therefore conclude that the stretch move should be used with caution in moderate to high dimensions. We also present some heuristic results explaining this behaviour.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
高维仿射不变系综采样器“拉伸移动”的性质
给出了仿射不变集合采样器马尔可夫链蒙特卡罗方法的理论和实际性质。在高维中,采样器的“拉伸移动”具有不寻常和不受欢迎的特性。我们用一个已知均值和协方差结构的n维相关高斯玩具问题和一个多变量版本的Rosenbrock问题来证明这一点。目视检查痕迹图表明烧蚀期很短。经过仔细检查,我们发现目标分布的均值和方差与已知值不匹配,并且链需要很长时间才能收敛。当n大于50时,这个问题变得更加严重。我们还应用了适用于集成方法的不同诊断方法来确定是否缺乏收敛性。诊断方法包括Gelman-Rubin法、海德堡-韦尔奇检验、综合自相关和接受率。单个步行者的轨迹图似乎也很有用。因此,我们得出结论,拉伸移动应谨慎使用中至高维。我们还提出了一些启发式结果来解释这种行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1