Generation of Artificial FO-contours of Emotional Speech with Generative Adversarial Networks

Shumpei Matsuoka, Yao Jiang, A. Sasou
{"title":"Generation of Artificial FO-contours of Emotional Speech with Generative Adversarial Networks","authors":"Shumpei Matsuoka, Yao Jiang, A. Sasou","doi":"10.1109/SSCI44817.2019.9002917","DOIUrl":null,"url":null,"abstract":"Fundamental frequency (F0) contours play a very important role in reflecting the emotion, identity, intension, and attitude of a speaker in samples of speech. In this paper, we adopted a generative adversarial network (GAN) to generate artificial F0 contours of emotional speech. The GAN faces some limitations, however, in that it frequently generates undesired data because of unstable training, and it can repeatedly generate very similar or the same data, which is known as mode collapse. This study constructed a GAN-based generative model for F0 contours that can stably generate more-various F0 contours that fit the statistical characteristics of the training data. We tested the classification rate of four kinds of emotions in the F0 contours generated from five kinds of generative models. We also evaluated the averaged local density of the generated F0 contours to represent the variety of the generated F0 contours. Preliminary experiments confirmed the validity and effectiveness of the proposed generative model.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"27 1","pages":"1030-1034"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fundamental frequency (F0) contours play a very important role in reflecting the emotion, identity, intension, and attitude of a speaker in samples of speech. In this paper, we adopted a generative adversarial network (GAN) to generate artificial F0 contours of emotional speech. The GAN faces some limitations, however, in that it frequently generates undesired data because of unstable training, and it can repeatedly generate very similar or the same data, which is known as mode collapse. This study constructed a GAN-based generative model for F0 contours that can stably generate more-various F0 contours that fit the statistical characteristics of the training data. We tested the classification rate of four kinds of emotions in the F0 contours generated from five kinds of generative models. We also evaluated the averaged local density of the generated F0 contours to represent the variety of the generated F0 contours. Preliminary experiments confirmed the validity and effectiveness of the proposed generative model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生成对抗网络的情绪语音人工fo轮廓生成
基频(F0)轮廓在言语样本中反映说话人的情感、身份、强度和态度等方面起着重要作用。在本文中,我们采用生成对抗网络(GAN)来生成情感语音的人工F0轮廓。然而,GAN面临着一些限制,因为它经常因为不稳定的训练而产生不希望的数据,并且它可以重复地产生非常相似或相同的数据,这被称为模式崩溃。本研究构建了一种基于gan的F0轮廓生成模型,该模型能够稳定地生成更多符合训练数据统计特征的F0轮廓。我们测试了五种生成模型生成的F0轮廓中四种情绪的分类率。我们还评估了生成的F0等高线的平均局部密度,以表示生成的F0等高线的多样性。初步实验证实了该生成模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1