{"title":"High-rate hollow-cathode amorphous silicon deposition","authors":"Chris M. Horwitz, David R. McKenzie","doi":"10.1016/0378-5963(85)90225-9","DOIUrl":null,"url":null,"abstract":"<div><p>Amorphous silicon has been deposited at high rates using an RF-excited hollow cathode. Films of 0.6 μm have been formed in 6 min, thus overcoming an important barrier to economic fabrication of amorphous silicon devices. In addition, the films are resistant to abrasion, which may be a consequence of the extremely high ion bombardment which the growing films are subject to. Infrared spectra have confirmed that the bonding of hydrogen is predominantly in the preferred monohydride form, without any external substrate heating.</p></div>","PeriodicalId":100105,"journal":{"name":"Applications of Surface Science","volume":"22 ","pages":"Pages 925-929"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0378-5963(85)90225-9","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Surface Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0378596385902259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Amorphous silicon has been deposited at high rates using an RF-excited hollow cathode. Films of 0.6 μm have been formed in 6 min, thus overcoming an important barrier to economic fabrication of amorphous silicon devices. In addition, the films are resistant to abrasion, which may be a consequence of the extremely high ion bombardment which the growing films are subject to. Infrared spectra have confirmed that the bonding of hydrogen is predominantly in the preferred monohydride form, without any external substrate heating.