Bandpass Sigma–Delta Modulation: The Path toward RF-to-Digital Conversion in Software-Defined Radio

J. M. de la Rosa
{"title":"Bandpass Sigma–Delta Modulation: The Path toward RF-to-Digital Conversion in Software-Defined Radio","authors":"J. M. de la Rosa","doi":"10.3390/chips2010004","DOIUrl":null,"url":null,"abstract":"This paper reviews the state of the art on bandpass ΣΔ modulators (BP-ΣΔMs) intended to digitize radio frequency (RF) signals. A priori, this is the most direct way to implement software-defined radio (SDR) systems since the analog/digital interface is placed closer to the antenna, thus reducing the analog circuitry and doing most of the signal processing in the digital domain. In spite of their higher programmability and scalability, RF BP-ΣΔM analog-to-digital converters (ADCs) require more energy to operate in the GHz range as compared with their low-pass (LP) counterparts. This makes conventional direct conversion receivers (DCRs) the commonplace approach due to their overall smaller energy consumption. This paper surveys some circuits and systems techniques which can make RF ADCs and SDR-based transceivers more efficient and feasible to be embedded in mobile terminals.","PeriodicalId":6666,"journal":{"name":"2015 IEEE Hot Chips 27 Symposium (HCS)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Hot Chips 27 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chips2010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reviews the state of the art on bandpass ΣΔ modulators (BP-ΣΔMs) intended to digitize radio frequency (RF) signals. A priori, this is the most direct way to implement software-defined radio (SDR) systems since the analog/digital interface is placed closer to the antenna, thus reducing the analog circuitry and doing most of the signal processing in the digital domain. In spite of their higher programmability and scalability, RF BP-ΣΔM analog-to-digital converters (ADCs) require more energy to operate in the GHz range as compared with their low-pass (LP) counterparts. This makes conventional direct conversion receivers (DCRs) the commonplace approach due to their overall smaller energy consumption. This paper surveys some circuits and systems techniques which can make RF ADCs and SDR-based transceivers more efficient and feasible to be embedded in mobile terminals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带通σ - δ调制:软件无线电中射频到数字转换的路径
本文回顾了用于数字化射频(RF)信号的带通ΣΔ调制器(BP-ΣΔMs)的最新进展。首先,这是实现软件定义无线电(SDR)系统最直接的方法,因为模拟/数字接口更靠近天线,从而减少了模拟电路,并在数字领域进行了大部分信号处理。尽管RF BP-ΣΔM模数转换器(adc)具有更高的可编程性和可扩展性,但与低通(LP)转换器相比,在GHz范围内工作需要更多的能量。这使得传统的直接转换接收器(dcr)成为普遍的方法,因为它们的整体能耗更小。本文研究了使射频adc和基于sdr的收发器更高效、更可行地嵌入移动终端的一些电路和系统技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Winner-Take-All and Loser-Take-All Circuits: Architectures, Applications and Analytical Comparison A Survey of Automotive Radar and Lidar Signal Processing and Architectures Design and Performance Analysis of Hardware Realization of 3GPP Physical Layer for 5G Cell Search Silicon Carbide: Physics, Manufacturing, and Its Role in Large-Scale Vehicle Electrification Synergistic Verification of Hardware Peripherals through Virtual Prototype Aided Cross-Level Methodology Leveraging Coverage-Guided Fuzzing and Co-Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1