{"title":"Overlapping Multi-Bandit Best Arm Identification","authors":"J. Scarlett, Ilija Bogunovic, V. Cevher","doi":"10.1109/ISIT.2019.8849327","DOIUrl":null,"url":null,"abstract":"In the multi-armed bandit literature, the multibandit best-arm identification problem consists of determining each best arm in a number of disjoint groups of arms, with as few total arm pulls as possible. In this paper, we introduce a variant of the multi-bandit problem with overlapping groups, and present two algorithms for this problem based on successive elimination and lower/upper confidence bounds (LUCB). We bound the number of total arm pulls required for high-probability best-arm identification in every group, and we complement these bounds with a near-matching algorithm-independent lower bound.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"121 2 1","pages":"2544-2548"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In the multi-armed bandit literature, the multibandit best-arm identification problem consists of determining each best arm in a number of disjoint groups of arms, with as few total arm pulls as possible. In this paper, we introduce a variant of the multi-bandit problem with overlapping groups, and present two algorithms for this problem based on successive elimination and lower/upper confidence bounds (LUCB). We bound the number of total arm pulls required for high-probability best-arm identification in every group, and we complement these bounds with a near-matching algorithm-independent lower bound.