{"title":"Morse potential in relativistic contexts from generalized momentum operator: Schottky anomalies, Pekeris approximation and mapping","authors":"I. Gomez, E. S. Santos, O. Abla","doi":"10.1142/S0217732321501406","DOIUrl":null,"url":null,"abstract":"In this work we explore a generalization of the Dirac and Klein-Gordon (KG) oscillators, provided with a deformed linear momentum inspired in nonextensive statistics, that gives place to the Morse potential in relativistic contexts by first principles. In the (1+1)-dimensional case the relativistic oscillators are mapped into the quantum Morse potential. Using the Pekeris approximation, in the (3+1)-dimensional case we study the thermodynamics of the S-waves states (l=0) of the H2, LiH, HCl and CO molecules (in the non-relativistic limit) and of a relativistic electron, where Schottky anomalies (due to the finiteness of the Morse spectrum) and spin contributions to the heat capacity are reported. By revisiting a generalized Pekeris approximation, we provide a mapping from (3+1)-dimensional Dirac and KG equations with a spherical potential to an associated one-dimensional Schr\\\"odinger-like equation, and we obtain the family of potentials for which this mapping corresponds to a Schr\\\"odinger equation with non-minimal coupling.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732321501406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work we explore a generalization of the Dirac and Klein-Gordon (KG) oscillators, provided with a deformed linear momentum inspired in nonextensive statistics, that gives place to the Morse potential in relativistic contexts by first principles. In the (1+1)-dimensional case the relativistic oscillators are mapped into the quantum Morse potential. Using the Pekeris approximation, in the (3+1)-dimensional case we study the thermodynamics of the S-waves states (l=0) of the H2, LiH, HCl and CO molecules (in the non-relativistic limit) and of a relativistic electron, where Schottky anomalies (due to the finiteness of the Morse spectrum) and spin contributions to the heat capacity are reported. By revisiting a generalized Pekeris approximation, we provide a mapping from (3+1)-dimensional Dirac and KG equations with a spherical potential to an associated one-dimensional Schr\"odinger-like equation, and we obtain the family of potentials for which this mapping corresponds to a Schr\"odinger equation with non-minimal coupling.