Pick the Best Pre-trained Model: Towards Transferability Estimation for Medical Image Segmentation

Yuncheng Yang, Meng Wei, Junjun He, J. Yang, Jin Ye, Yun Gu
{"title":"Pick the Best Pre-trained Model: Towards Transferability Estimation for Medical Image Segmentation","authors":"Yuncheng Yang, Meng Wei, Junjun He, J. Yang, Jin Ye, Yun Gu","doi":"10.48550/arXiv.2307.11958","DOIUrl":null,"url":null,"abstract":"Transfer learning is a critical technique in training deep neural networks for the challenging medical image segmentation task that requires enormous resources. With the abundance of medical image data, many research institutions release models trained on various datasets that can form a huge pool of candidate source models to choose from. Hence, it's vital to estimate the source models' transferability (i.e., the ability to generalize across different downstream tasks) for proper and efficient model reuse. To make up for its deficiency when applying transfer learning to medical image segmentation, in this paper, we therefore propose a new Transferability Estimation (TE) method. We first analyze the drawbacks of using the existing TE algorithms for medical image segmentation and then design a source-free TE framework that considers both class consistency and feature variety for better estimation. Extensive experiments show that our method surpasses all current algorithms for transferability estimation in medical image segmentation. Code is available at https://github.com/EndoluminalSurgicalVision-IMR/CCFV","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15 1","pages":"674-683"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.11958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transfer learning is a critical technique in training deep neural networks for the challenging medical image segmentation task that requires enormous resources. With the abundance of medical image data, many research institutions release models trained on various datasets that can form a huge pool of candidate source models to choose from. Hence, it's vital to estimate the source models' transferability (i.e., the ability to generalize across different downstream tasks) for proper and efficient model reuse. To make up for its deficiency when applying transfer learning to medical image segmentation, in this paper, we therefore propose a new Transferability Estimation (TE) method. We first analyze the drawbacks of using the existing TE algorithms for medical image segmentation and then design a source-free TE framework that considers both class consistency and feature variety for better estimation. Extensive experiments show that our method surpasses all current algorithms for transferability estimation in medical image segmentation. Code is available at https://github.com/EndoluminalSurgicalVision-IMR/CCFV
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择最佳预训练模型:面向医学图像分割的可转移性估计
对于需要大量资源的医学图像分割任务,迁移学习是训练深度神经网络的一项关键技术。随着医学图像数据的丰富,许多研究机构发布了在各种数据集上训练的模型,这些数据集可以形成一个巨大的候选源模型库供选择。因此,评估源模型的可移植性(即跨不同下游任务的泛化能力)对于正确和有效的模型重用是至关重要的。为了弥补迁移学习在医学图像分割中存在的不足,本文提出了一种新的可迁移性估计方法。本文首先分析了使用现有TE算法进行医学图像分割的缺点,然后设计了一个考虑类一致性和特征多样性的无源TE框架,以获得更好的估计。大量的实验表明,我们的方法优于目前医学图像分割中可转移性估计的所有算法。代码可从https://github.com/EndoluminalSurgicalVision-IMR/CCFV获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-Ray Images of Multiple Body Parts Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images Self-Supervised Learning for Endoscopic Video Analysis Exploring Unsupervised Cell Recognition with Prior Self-activation Maps DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1