Zika virus and microcephaly: A review of the molecular interactions

Anne Micaelle Souza Montalvao, Bárbara Rezende Teixeira, R. Andrade, Laura Gomes Lima, E. V. Gomes
{"title":"Zika virus and microcephaly: A review of the molecular interactions","authors":"Anne Micaelle Souza Montalvao, Bárbara Rezende Teixeira, R. Andrade, Laura Gomes Lima, E. V. Gomes","doi":"10.15761/IMM.1000392","DOIUrl":null,"url":null,"abstract":"The Zika virus (ZIKV) is a tropical and subtropical emergent pathogen, with main clinical manifestations of low fever, headache, myalgia, arthralgia in the small joints of the hands and feet, non-purulent conjunctivitis, ocular pain, prostration, and pruritic maculopapular rash. Furthermore, the most feared complication of this viral infection is microcephaly, caused by the interaction between ZIKV and cells from the fetal central nervous system (CNS). Identifying the mechanism and factors linked to the entry of ZIKV into human cells, particularly in the fetus during the first developmental months, is currently the greatest challenge in understanding the tropism and pathogenesis of ZIKV. Thus, this review aims to assess the ZIKV–human molecular interaction, the main cellular receptors involved in the virus and host, the viral infection process, and microcephaly neuropathogenesis. During ZIKV–human host interaction, the virus binds to host cell membrane receptors, followed by internalization (through endocytic vesicles) and inhibition of the innate immune response, similar to the normal process of receptor signaling activation. Infection of human fetuses by ZIKV leads to cell cycle deregulation, activating cell death by apoptosis, and microcephaly. Blocking the interaction between the virus and specific membrane receptors may be a good strategy to prevent ZIKV infection, particularly in pregnant women during the first months of fetal development. Thus, knowledge of the whole ZIKV–host interaction process may help in designing novel therapies or targets for drugs to prevent the death of fetal CNS cells and microcephaly.","PeriodicalId":94322,"journal":{"name":"Integrative molecular medicine","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/IMM.1000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Zika virus (ZIKV) is a tropical and subtropical emergent pathogen, with main clinical manifestations of low fever, headache, myalgia, arthralgia in the small joints of the hands and feet, non-purulent conjunctivitis, ocular pain, prostration, and pruritic maculopapular rash. Furthermore, the most feared complication of this viral infection is microcephaly, caused by the interaction between ZIKV and cells from the fetal central nervous system (CNS). Identifying the mechanism and factors linked to the entry of ZIKV into human cells, particularly in the fetus during the first developmental months, is currently the greatest challenge in understanding the tropism and pathogenesis of ZIKV. Thus, this review aims to assess the ZIKV–human molecular interaction, the main cellular receptors involved in the virus and host, the viral infection process, and microcephaly neuropathogenesis. During ZIKV–human host interaction, the virus binds to host cell membrane receptors, followed by internalization (through endocytic vesicles) and inhibition of the innate immune response, similar to the normal process of receptor signaling activation. Infection of human fetuses by ZIKV leads to cell cycle deregulation, activating cell death by apoptosis, and microcephaly. Blocking the interaction between the virus and specific membrane receptors may be a good strategy to prevent ZIKV infection, particularly in pregnant women during the first months of fetal development. Thus, knowledge of the whole ZIKV–host interaction process may help in designing novel therapies or targets for drugs to prevent the death of fetal CNS cells and microcephaly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寨卡病毒与小头畸形:分子相互作用的综述
寨卡病毒(Zika virus, ZIKV)是一种热带和亚热带突发性病原体,主要临床表现为低热、头痛、肌痛、手脚小关节关节痛、非化脓性结膜炎、眼痛、虚脱、瘙痒性斑疹。此外,这种病毒感染最可怕的并发症是小头畸形,这是由寨卡病毒与胎儿中枢神经系统细胞相互作用引起的。确定与寨卡病毒进入人类细胞有关的机制和因素,特别是在发育最初几个月的胎儿中,是目前了解寨卡病毒的倾向和发病机制的最大挑战。因此,本文旨在对寨卡病毒与人的分子相互作用、病毒与宿主参与的主要细胞受体、病毒感染过程以及小头畸形的神经发病机制进行综述。在zikv -人宿主相互作用过程中,病毒与宿主细胞膜受体结合,随后内化(通过内吞囊泡)并抑制先天免疫反应,类似于受体信号激活的正常过程。寨卡病毒感染人类胎儿导致细胞周期失调,细胞凋亡激活细胞死亡和小头畸形。阻断病毒与特定膜受体之间的相互作用可能是预防寨卡病毒感染的一个好策略,特别是在胎儿发育的头几个月的孕妇中。因此,了解整个zikv -宿主相互作用过程可能有助于设计新的治疗方法或药物靶点,以防止胎儿中枢神经系统细胞死亡和小头畸形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOX30 might not be associated with Sertoli cell-only syndrome in azoospermic Japanese men Two genetic disorders (TRMU and SCYL1) explaining transient infantile liver failure in one patient COVID-19: Search for Therapeutics Comparison of ex-vivo organ culture and cell culture to study drug efficiency and virus-host interactions NL63: A Better Surrogate Virus for studying SARS-CoV-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1