Amir Afzal, A. Riaz, Sharmin Ashraf, Javed Iqbal, M. Ijaz, F. Naz, Syed K. N. Shah
{"title":"Identification of Durable Resistance against Yellow Rust","authors":"Amir Afzal, A. Riaz, Sharmin Ashraf, Javed Iqbal, M. Ijaz, F. Naz, Syed K. N. Shah","doi":"10.33687/phytopath.011.01.4079","DOIUrl":null,"url":null,"abstract":"Yellow (stripe) rust of wheat is responsible for a severe decrease in crop yield worldwide. Deployment of durable disease resistant cultivars is the best strategy being cost effective and safe. A comprehensive study was conducted to identify sources of durable resistance against stripe rust of wheat. Initially, surveillance of the crop was conducted to expose the status of the dilemma. The study discovered that disease is more prevalent in the region existing in Khyber Pakhtunkhwa (KPK) and the Northern Region of Punjab. Race identification of the pathogen under glasshouse conditions revealed high diversity and at least eleven races were designated. Prevalence of the race 70E0 was most dominating (39 %). Cultivation of multi-location trap nurseries yielded valuable information demonstrating disease-fighting genes where, at all locations, Yr5, Yr10, Yr15, and YrSp were effective. Seventy-two advanced lines collected from research institutions were screened in a glasshouse to categorize the test material based on their response to disease at the seedling stage. Test material comprising seventy-two advanced lines collected from different research institutions was screened in a glasshouse to categorize the test material on the ground of their response against disease at the seedling stage. Slow and fast rusters were categorized by studying susceptible and moderately susceptible seedlings in the field for two years. Genetic diversity in the host allows changes in the genetic organization to adapt to environmental changes. Coefficient parentage revealed the test material's restricted genetic base. In the pedigree of wheat advanced lines, Pastor, Kauz, Inqilab-91, Sokoll, Ae. Aquarosa (211), WBLL-1, Kukuna, and Millan were 60% out of a total of 72 parents. Findings of the present studies revealed persistent resistant genotypes with a broad genetic background are needed to feed a growing population.","PeriodicalId":36106,"journal":{"name":"International Journal of Phytopathology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33687/phytopath.011.01.4079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Yellow (stripe) rust of wheat is responsible for a severe decrease in crop yield worldwide. Deployment of durable disease resistant cultivars is the best strategy being cost effective and safe. A comprehensive study was conducted to identify sources of durable resistance against stripe rust of wheat. Initially, surveillance of the crop was conducted to expose the status of the dilemma. The study discovered that disease is more prevalent in the region existing in Khyber Pakhtunkhwa (KPK) and the Northern Region of Punjab. Race identification of the pathogen under glasshouse conditions revealed high diversity and at least eleven races were designated. Prevalence of the race 70E0 was most dominating (39 %). Cultivation of multi-location trap nurseries yielded valuable information demonstrating disease-fighting genes where, at all locations, Yr5, Yr10, Yr15, and YrSp were effective. Seventy-two advanced lines collected from research institutions were screened in a glasshouse to categorize the test material based on their response to disease at the seedling stage. Test material comprising seventy-two advanced lines collected from different research institutions was screened in a glasshouse to categorize the test material on the ground of their response against disease at the seedling stage. Slow and fast rusters were categorized by studying susceptible and moderately susceptible seedlings in the field for two years. Genetic diversity in the host allows changes in the genetic organization to adapt to environmental changes. Coefficient parentage revealed the test material's restricted genetic base. In the pedigree of wheat advanced lines, Pastor, Kauz, Inqilab-91, Sokoll, Ae. Aquarosa (211), WBLL-1, Kukuna, and Millan were 60% out of a total of 72 parents. Findings of the present studies revealed persistent resistant genotypes with a broad genetic background are needed to feed a growing population.