Oil spill detection using simulated radarsat constellation mission compact polarimetric SAR data

M. Dabboor, S. Singha, K. Topouzelis, D. Flett
{"title":"Oil spill detection using simulated radarsat constellation mission compact polarimetric SAR data","authors":"M. Dabboor, S. Singha, K. Topouzelis, D. Flett","doi":"10.1109/IGARSS.2017.8128021","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) remote sensing has become a valuable tool for maritime pollution monitoring with three major requirements: 1) low noise floor, 2) large area coverage, and 3) polarization diversity to maximize detection and discrimination of pollution features. In order to reconcile the advantages of fully polarimetric SAR with larger area coverage, compact polarimetry (CP) acquisitions offer a trade-off between the above mentioned requirements. The future Canadian RADARSAT Constellation Mission (RCM) will enable the acquisition of CP SAR data in wide swath imagery, including ScanSAR modes. In this study, we investigate the potential of CP for four RCM SAR modes for oil spill detection. These modes have different spatial resolutions and noise floors. An initial visual interpretation of the results indicates potential of some CP features for the discrimination between oil spills and lookalike.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"1 1","pages":"4582-4585"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8128021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Synthetic Aperture Radar (SAR) remote sensing has become a valuable tool for maritime pollution monitoring with three major requirements: 1) low noise floor, 2) large area coverage, and 3) polarization diversity to maximize detection and discrimination of pollution features. In order to reconcile the advantages of fully polarimetric SAR with larger area coverage, compact polarimetry (CP) acquisitions offer a trade-off between the above mentioned requirements. The future Canadian RADARSAT Constellation Mission (RCM) will enable the acquisition of CP SAR data in wide swath imagery, including ScanSAR modes. In this study, we investigate the potential of CP for four RCM SAR modes for oil spill detection. These modes have different spatial resolutions and noise floors. An initial visual interpretation of the results indicates potential of some CP features for the discrimination between oil spills and lookalike.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模拟雷达卫星星座任务压缩极化SAR数据进行溢油探测
合成孔径雷达(SAR)遥感已成为海洋污染监测的重要工具,主要有三个方面的要求:1)低本底噪声;2)大面积覆盖;3)极化多样性,以最大限度地检测和识别污染特征。为了协调全极化SAR的优势和更大的面积覆盖,紧凑的极化(CP)采集提供了上述要求之间的权衡。未来的加拿大RADARSAT星座任务(RCM)将能够获取包括扫描SAR模式在内的宽幅图像的CP SAR数据。在这项研究中,我们研究了CP在四种RCM SAR模式中用于溢油检测的潜力。这些模式具有不同的空间分辨率和噪声底。对结果的初步视觉解释表明,某些CP特征可能用于区分石油泄漏和相似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1