Adaptive Unknown Object Rearrangement Using Low-Cost Tabletop Robot

Chun-Yu Chai, Wen-Hsiao Peng, Shiao-Li Tsao
{"title":"Adaptive Unknown Object Rearrangement Using Low-Cost Tabletop Robot","authors":"Chun-Yu Chai, Wen-Hsiao Peng, Shiao-Li Tsao","doi":"10.1109/ICRA40945.2020.9197356","DOIUrl":null,"url":null,"abstract":"Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"2372-2378"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于低成本桌面机器人的自适应未知物体重排
对象重排规划研究通常考虑已知对象。一些基于学习的方法可以在单步交互后预测未知物体的运动,但需要手动生成中间目标来完成重排任务。在这项工作中,我们提出了一个未知对象重排的框架。我们的系统首先通过少量的识别动作对对象进行建模,并在任务执行过程中调整模型参数。我们基于一个低成本的桌面机器人(180美元以下)实现了所提出的框架,以展示使用物理引擎辅助动作预测的优势。实验结果表明,在运行我们的自适应学习程序后,机器人可以在桌面环境中使用平均5个离散的推动成功地排列新物体,并满足精确的3.5 cm平移和5°旋转标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1