{"title":"Adaptive Unknown Object Rearrangement Using Low-Cost Tabletop Robot","authors":"Chun-Yu Chai, Wen-Hsiao Peng, Shiao-Li Tsao","doi":"10.1109/ICRA40945.2020.9197356","DOIUrl":null,"url":null,"abstract":"Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"2372-2378"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.